Menu English

Compressing large amounts of netflow data using a pattern classification scheme

Publicatie van Kenniscentrum Creating 010
M.S. Bargh, Debora E. G. Moolenaar, Luc V. Zeeuw,de, Rémon Cornelisse, R. Choenni | Artikel | Publicatiedatum: 10 april 2016
The storage of large amounts of network data is a challenging problem, in particular if it still needs to be actively consulted as for example in the case of network forensics. Here we propose a method to compress NetFlow data while simultaneously adding domain knowledge. Our method is based on a pattern classification scheme by considering all flows from a single source IP address simultaneously. Each pattern can be described by at most 19 attributes that give a good statistical description of the original NetFlow data, while minimising information loss. We estimate that on average a factor of about 300 in storage space can be gained. The process is explained using a real world dataset from a large, high-speed, network, and a formal rationale is provided.

Auteur(s) - verbonden aan Hogeschool Rotterdam

Betrokken bij deze publicatie

Wij maken gebruik van functionele en analytische cookies voor de werking van de website en het verbeteren van jouw gebruikerservaring. Wil je meer weten? Lees dan ook ons cookiebeleid.