Menu English

Compressing large amounts of netflow data using a pattern classification scheme

Publicatie van Kenniscentrum Creating 010
M.S. Bargh, Debora E. G. Moolenaar, Luc V. Zeeuw,de, Rémon Cornelisse, R. Choenni | Artikel | Publicatiedatum: 10 april 2016
The storage of large amounts of network data is a challenging problem, in particular if it still needs to be actively consulted as for example in the case of network forensics. Here we propose a method to compress NetFlow data while simultaneously adding domain knowledge. Our method is based on a pattern classification scheme by considering all flows from a single source IP address simultaneously. Each pattern can be described by at most 19 attributes that give a good statistical description of the original NetFlow data, while minimising information loss. We estimate that on average a factor of about 300 in storage space can be gained. The process is explained using a real world dataset from a large, high-speed, network, and a formal rationale is provided.

Auteur(s) - verbonden aan Hogeschool Rotterdam

Betrokken bij deze publicatie
🍪

Welkom!
Wij maken gebruik van functionele en analytische cookies voor de werking van de website en het verbeteren van jouw gebruikerservaring. Wil je meer weten? Lees dan ook ons cookiebeleid.

Instellen