Menu Zoeken English

Sharing confidential data for algorithm development by multiple imputation

Publicatie van Kenniscentrum Creating 010
R. Choenni, | Artikel | Publicatiedatum: 29 juli 2013
The availability of real-life data sets is of crucial importance for algorithm and application development, as these often require insight into the specific properties of the data. Often, however, such data are not released because of their proprietary and confidential nature. We propose to solve this problem using the statistical technique of multiple imputation, which is used as a powerful method for generating realistic synthetic data sets. Additionally, it is shown how the generated records can be combined into networked data using clustering techniques.


Betrokken bij deze publicatie

We gebruiken cookies voor analyse en marketing om de website te verbeteren.

Wijzig cookie-instellingen