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Abstract: Climate change and changing land use challenge the livability and flood safety of Dutch
cities. One option cities have to become more climate-proof is to increase infiltration of stormwater
into soil through permeable pavement and thus reduce discharge of stormwater into sewer systems.
To analyze the market receptivity for permeable pavements in the Netherlands, this article focuses
on the perception of end-users towards key transition factors in the infrastructure transformation
processes. Market receptivity was studied on two levels: (1) on the system level, by analyzing
20 key factors in the Dutch urban water sector that enable wider application of permeable pavements;
and (2) on the technology level, by analyzing 12 key factors that explain why decision makers
select permeable pavements or not. Results show that trust between cooperating partners was
perceived as the system level key factor that needs to be improved most to facilitate the wider uptake
of permeable pavements. Additionally, the association of end-users with permeable pavement,
particularly their willingness to apply these technologies and their understanding of what kinds
of benefits these technologies could bring, was regarded the most important receptivity attribute.
On the technology level, the reliability of permeable pavement was regarded as the most important
end-user consideration for selecting this technology.

Keywords: SUDS; sponge city; permeable pavement; transformative infrastructures; stormwater
infiltration resilience; urban water; market receptivity

1. Introduction

Climate change and changing land use challenge the livability and flood safety of
Dutch cities [1]. The urgency and necessity of mitigating climate change is demonstrated by
the 2015 Paris Climate Agreement, in which most of the world’s nations agreed to take the
required measures to keep the world well below an average temperature rise of 2 ◦C. At the
same time, adaptation to climate change is crucial, as the impact of climate change is already
becoming critical, particularly in densely populated urban areas. In the Netherlands, the
Delta Plan on Spatial Adaptation was established as a joint plan by municipalities, water
boards, provinces, and the national government to make the Netherlands climate-proof
and water-resilient [2]. The Delta Plan will accelerate and intensify strategies and measures
to reduce flooding, heat stress, and droughts, and to reduce climate impacts through spatial
planning measures. The goal is to make the Netherlands climate-proof and water-robust
no later than 2050. From 2020 onward, all municipalities must take climate change into
account for urban development and redevelopment projects in order to make their cities
climate-proof by 2030 [2].
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1.1. Stormwater Infiltration, Sponge Cities, and Transformative Infrastructures

One of the options cities have to become more climate-proof is to increase infiltration of
stormwater into soil through permeable pavement and thus reduce discharge of stormwater
to sewer systems. Permeable pavements are technical systems that are part of the wider
category of sustainable urban drainage systems (SUDS) [3,4]. The ambition to apply these
kinds of systems on an urban scale rather than on a pilot scale has led to the introduction
of urban concepts such as “water sensitive cities” [5] and “sponge cities” [6]. The sponge
city concept aims to preserve the natural water balance in urban areas [6]. The main
characteristics of a sponge city are the capacities to infiltrate, absorb, store, purify, drain,
and manage stormwater. In addition to these technical capacities, sponge cities should have
the institutional capacity to mainstream urban flood management into urban planning
and urban design practice, including implementation, maintenance, and adaptation of
local urban water infrastructure systems [7]. While the concept of sponge cities has gained
momentum among urban policy makers in China, the concept probably has another
geographical origin, as earlier references are found in Vietnam and India [7]. Some of the
concept’s guiding principles can even be traced back to ancient urban civilizations [6].

In this article, the concept of transformation is used as an analytical lens to study the
desired transition from permeable pavement pilot projects to transformative infrastruc-
tures. Sustainable urban transformations can be characterized by sustainable places, the
sustainable transition of the urban development regime, and the sustainable transition of
related societal sectors such as water, energy, and transportation [8]. The concept of trans-
formation has been applied effectively in transition studies in the urban water sector [9–11].
A transformed infrastructure system has fundamentally different system characteristics
than the system it evolved from [11]. Transformative capacity is a system’s capacity to
transform itself in face of expected catastrophic developments such as human-induced
climate change impacts [12]. The urgency of transformative infrastructures lies in the
inadequacy of current centralized capital-intensive urban infrastructures to adapt to and
anticipate rapid social and environmental change [13,14]. Transformative infrastructures
aim to deliver co-benefits across infrastructure sectors, between infrastructure and the
environment, and between infrastructure and inclusive social development, as well as to
increase spatial benefits. They have the potential to shift organizations that implement
them towards more sustainable development trajectories [15].

1.2. Permeable Pavements and Barriers to Their Wider Implementation

Permeable pavements are an infrastructure option that cities have available for the
transition to transformative infrastructures. Permeable pavements have been used in the
Netherlands for approximately 25 years to infiltrate stormwater runoff and assist with
recharging groundwater in low-permeability soils [3]. When appropriately designed,
constructed, and maintained, these systems can contribute to reducing urban flooding,
mitigating the urban heat island effect, and reducing the effects of droughts through replen-
ishment of groundwater [3]. Over the past 25 years, various types of permeable pavements
have been implemented in municipalities in the Netherlands in order to increase infiltration
capacity in urban areas and reduce stormwater discharge to surface water systems.

Despite the potential of permeable pavements to contribute to transformative infras-
tructures in urban areas, the actual widespread adoption of this technology on an urban
scale remains limited. In the Netherlands, an increasing number of small and medium
enterprises (SMEs) have launched different systems in the market. With often promising
initial results, these adaptation measures seemed at first to be a very suitable solution for
urban pluvial flooding. There are locations where the results are satisfactory, but in many
cases, after several years, the infiltration capacity decreases due to clogging and pollu-
tion [16–18]. As a result, the willingness of municipalities to apply permeable pavements at
a larger scale seems to remain limited. There is a lack of knowledge about the effectiveness
of various permeable pavement systems; how the functioning of these systems is influenced
by local circumstances such as soil type, vegetation, and traffic intensity; how maintenance
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can influence the long-term effectiveness of these systems; and what the life cycle costs and
benefits of these systems are [19]. This lack of knowledge could be an important obstacle
for the wider application and breakthrough of these systems, particularly because the
reliability of novel technologies has been identified as the most important factor for urban
water decision makers and policy makers regarding whether to apply a certain technology
or not [20].

1.3. Research Context: The Sponge City Project

Urban living labs are spaces for sustainability experimentation. They are sites in cities
where stakeholders can design, test, and learn from socio-technical innovations in real
time. They are potentially capable of contributing to sustainability transitions beyond the
living lab scale [21]. This article reports about a study that was executed in the context of
a living lab: the Green Village TU Delft, the Netherlands. Within the Green Village is the
Water Street (NL: Waterstraat), where entrepreneurs can test and demonstrate their water
innovations in practice.

To address the slow implementation of permeable pavements in the Netherlands, the
Sponge City Project (NL: Infiltrerende Stad) was established in the research context of
the Water Street [22]. The project consortium consisted of universities of applied science,
government agencies, and SMEs.

The main research objective in the project was building insights to move from per-
meable pavement pilot projects to transformative infrastructures. This objective requires
that the technology of permeable pavements is applied at sufficient scale and, moreover,
that stakeholders involved in urban (re)development processes are sufficiently equipped
to design, implement, and maintain these technical measures during the life cycle of these
infrastructures. For water innovations such as permeable pavements to have a system-wide
impact on the city level, they need to be applied at an appropriate scale and speed. This
scale should be relevant, and not only symbolic, in relation to the magnitude and severity
of the urban climate change impacts and urban growth processes to which they aim to
respond [23].

1.3.1. Classification of Permeable Systems

To develop a joint understanding in the Sponge City Project of the wide variety of
permeable pavement systems, a generic model of different functionalities was made in
close cooperation with the project consortium. This model enables the classification of
permeable pavements [24]. The classification consisted of an overview of different working
principles available in existing permeable systems in terms of permeability, infiltration,
storage, and depletion of rainstorm water. This classification was also used to develop an
infographic to explain the working principles of permeable systems to a wider audience. A
review of technical background documents of permeable systems and interviews with the
suppliers of these systems showed that permeable systems are usually a configuration of
one or more of the following working principles, shown in Figure 1, with two examples in
Figure 2, and further explained below.

1. Porous pavement: A range of different porous pavements is used around the world
to treat stormwater runoff, including porous concrete pavers and porous asphalt used
on highways and parking lots.

2. Permeable pavement: To infiltrate water from the street surface to the underlying
aggregate layer and soil, various types of permeable pavements exist. Examples
include concrete pavers with wide joints or apertures, generally referred to as per-
meable concrete interlocking pavers. Concrete and plastic grid pavers are also often
used in some parts of Europe and other countries; the design and function of these
systems are similar to those of permeable concrete interlocking pavers. Stormwater
can infiltrate through the openings and gaps in these pavers, which are usually filled
with gravel or topsoil planted with grass.
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3. Permeable pavement by street drains: To discharge an excess of storm water to the
subsurface layers of permeable systems, street drains can be applied. These street
drains are comparable to street drains from sewerage systems, but in this case they
are connected to available storage in the sub base aggregate of the street. Street
drains can be connected with a drainpipe that distributes the water equally into the
storage space.

4. Storage in bedding/sub base aggregate: Various systems are available to store water
in the bedding or the sub base aggregate of the street. Examples include porous
aggregate materials, plastic cradles, or hollow concrete blocks. Geofabric textiles can
be applied under the storage to prevent groundwater seepage from flowing into the
storage space.

5. Discharge over weir: Storage systems are often equipped with a weir to discharge the
water once the storage has been filled with water. This overflow can be connected
to various other systems, such as the surface water system, a sewerage system, or
systems for active groundwater infiltration.

6. Drainage pipe: Drainage pipes are applied to empty the system. Drainage pipes are
usually connected to the surface water, but can also be connected to sewerage systems
or systems for active groundwater infiltration.

7. Infiltration: A passive way to empty the system is infiltration to the underlying soil.
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1.3.2. Long-Term Functioning of Permeable Systems

The long-term functioning and effectiveness of maintenance of permeable pavements
was addressed in the Sponge City Project by executing over 100 full-scale tests in a real-life
setting in the Netherlands using full-scale infiltration testing methodology [16,18]. The
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infiltration capacity of the studied systems was well above the Dutch and international
target values for infiltration. The tests also provided insights on the effectiveness of
maintenance. Analysis of 17 cases indicated that on average, the infiltration capacity of
permeable pavements increased 380% after carrying out maintenance [25].

1.3.3. Societal Costs and Benefits of Permeable Systems

Comparing the investment costs, operational costs, and adequacy of permeable pave-
ments to those of conventional technologies was done by a societal cost–benefit analysis
with a number of exemplar neighborhoods representative for the wide variety of locations
with permeable pavement installations that were studied by the Sponge City Project [26].
The outcome [26] showed that permeable pavements can be a cost-effective alternative for
the minimization of flood risk in urban environments if they are correctly designed. A
comparison of various management and maintenance strategies also indicated that thor-
ough management and maintenance pays off: extending the systems’ lifespan results in a
reduction of construction costs that outweighs the annual additional costs of maintenance.

1.4. Study Focus: Market Receptivity for Permeable Pavements

This article describes one of the main research topics in the Sponge City Project: market
receptivity for the wider adoption of permeable pavements. To analyze this, the article
focuses on the perception of end-users towards key transition factors in infrastructure
transformation processes. In these processes, the awareness, willingness, and capacities
of individuals and organizations that are expected to adopt new technologies, as well as
the processes that influence the preferences of these end-users, are essential factors [11].
The theoretical model of receptivity [27] originates from technology transfer policy studies
and can assist in understanding which conditions should be met to achieve technical and
social system impact. Jeffrey and Seaton [27] defined receptivity as “the extent to which
there exists not only a willingness (or disposition) but also an ability (or capability) in
different constituencies (individuals, communities, organizations, agencies, etc.) to absorb,
accept and utilize innovation options”. The receptivity framework has been applied and
operationalized successfully in earlier research to investigate the transformative capacity
of the Dutch water sector [28].

2. Materials and Methods

The Dutch market for permeable pavements developed by SMEs mainly consists of
municipalities. Market receptivity was studied on two levels: (1) on the system level, to
analyze the key factors in the Dutch urban water sector that enable wider application of
permeable pavements; and (2) on the technology level, to analyze the main considerations
of decision makers regarding why they select permeable pavements or not.

2.1. The Receptivity Framework

The receptivity framework was applied to analyze the professional perception on
change in urban water management. For mainstreaming of new professional practices and
alternative technological options, four attributes are required according to the receptivity
framework [27]:

• Awareness: being aware that a problem exists, and that alternative options are available.
• Association: associating these options with the stakeholders’ own agenda and objectives.
• Acquisition: being able to acquire, implement, operate, and maintain the alterna-

tive options.
• Application: having sufficient legal and financial incentives to apply the alterna-

tive options.

A developed operationalization of the receptivity framework for 20 key factors
(Table 1) on the system level [28] and 12 key factors (Table 2) on the technology level [20]
was used in this study to analyze market receptivity for permeable pavements.
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Table 1. The 20 system level key factors that were tested in this survey, classified according to the receptivity framework.

Awareness Acquisition

1. Available knowledge of the local urban water system 11. Trust between cooperating partners in projects

2. Water management knowledge of other stakeholders 12. Experience in connecting water management and spatial
planning

3. Reliable scientific knowledge about the urban water system 13. Availability of networks and organizational arrangements
for stakeholder cooperation

4. Knowledge of technical innovations in urban water
management 14. Quality of design skills in project teams

5. Juridical and administrative knowledge in urban water
management 15. Quality of negotiation skills in project teams

Association Application

6. Enthusiasm and perseverance of individuals 16. Financial incentives and subsidy schemes from national
government

7. Support and commitment of elected officials 17. Accountability frameworks for stakeholders in urban water
management

8. Involvement of citizens 18. Flexible interpretation of legal frameworks

9. Supportive organizational culture 19. Commercial viability of technical innovations

10. Availability of a national overarching vision 20. Binding targets for water quantity and water quality

Table 2. The 12 technology level key factors that were tested in this survey, classified according to the receptivity framework.

Social Economic Ecological Technical

1. Effects on spatial planning 5. Investment costs 8. Environmental impacts 9. Inadequacy of conventional
technology

2. Acceptability to citizens 6. Operational costs 10. Organizational experience
with innovative technologies

3. Effects on public relations
7. Availability of financial
incentives and subsidy
schemes

11. Expected implementation
timeframe

4. Public health impacts 12. Reliability of technology

2.2. Data Collection and Analysis

To study market receptivity on the two levels, two identical workshops were organized
in which a cumulative number of 34 experts participated (n = 34). These experts included
entrepreneurs, researchers, consultants, and policy makers, all in the field of permeable
pavements. The first workshop was organized as part of the Sponge City Project [29]; the
second workshop was organized as part of a symposium of the Community of Practice—
Permeable Pavement [30]. In both workshops, participants were asked to indicate: (1)
which factors at the system level, in their view, deserve the most and least priority to be
improved to achieve the overall objective of accelerating the application of permeable
pavement; and (2) which factors at the technology level determine whether or not decision
makers may select permeable pavements as a technical solution. During the workshops,
the participants could allot positive and negative points to the key factors. A cumulative
65 votes were cast in both workshops. The aggregated results of both workshops are
presented in the results section. To statistically compare the scores of the different factors,
the Z-score was used [31]. The Z-score assumes a normal distribution of the data. In
statistics, the Z-score (also referred to as the “standard score”) is obtained by subtracting
the data population mean from an individual raw score and then dividing the difference by
the standard deviation. The advantage of using this method is that it preserves extremes
while the overall dataset is normalized. The spread of values is also captured by the
Z-score method.
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3. Results

The system level results (Supplementary Materials) provided insights into which of
the 20 key factors are considered to require improvement to increase market receptivity
(Figure 3). Of the studied key factors, trust between cooperating partners in projects was
regarded as the single most important factor in urban water management to enable wider
application of permeable pavements. Enthusiasm and perseverance of individuals, support
and commitment of elected officials, and available knowledge about the local urban water
system were also considered priority factors for improvement.
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Figure 3. Results on system level: Z-score of key factors specified per receptivity attribute: aw = awareness, as = as-
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The results also provide insights into which of the four receptivity attributes was
considered to require most priority. The majority (4/5) of the “Association” factors were
considered priority factors for improvement to facilitate the transition to transformative
infrastructures. All “Application” factors, on the other hand, have a negative Z-score
and were not considered a priority. “Awareness” and “Acquisition” were in between.
Therefore, the results provide an indication that specifically the willingness of decision
makers and their understanding of what benefits this technology might bring to them
should be strengthened.

The technology level results (Supplementary Materials) provided insights into which
of the 12 key factors most determine whether or not end-users will apply permeable pave-
ment technology (Figure 4). The reliability of the technology was the single most important
perceived key factor for decision makers to select permeable pavements. Environmental
impacts were the second most important key factor, followed by operational costs. The
availability of financial incentives and subsidies was considered least important.
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4. Discussion

The study results in this article indicate that on the system level, trust between
cooperating partners in projects was the most prioritized key factor for the transition from
permeable pavement pilot projects to transformative infrastructures. On the technology
level, the reliability of permeable systems was perceived as the most important key factor
for end-users to select these technologies. Reliability includes technical functioning after
installation, but also after a few years, when pollution and clogging may have reduced
infiltration capacity

4.1. Comparison of Market Receptivity Results with Previous National Survey

To put the market receptivity results of this study in perspective, they were compared
with the results of the 2009 Dutch national study into transition potential in urban water
management [28]. This survey took place more than 10 years ago and was aimed at a
broader collection of urban water innovations, whereas the current research was specifically
aimed at permeable pavements. Despite these differences, it is remarkable that there were
still three identical priority factors in the top five of both studies. These were: trust between
cooperating partners in projects; support and commitment of elected officials; and available
knowledge about the local urban water system. As these factors have appeared in this
study again, the results of this project indicate that these factors still need to be addressed
to facilitate the accelerated, wider application of permeable pavements.

Similarly, on the technology level, the results showed that three out of the five most
important considerations were the same as in the national study from 2009 [20]: the relia-
bility of technology, investment costs, and environmental impacts. Two factors perceived
as important in this study were not identified as important in the 2009 national survey—
operational costs and public health impacts. Operational costs, and in particular the theme
of maintenance, have emerged as an important theme in the Dutch permeable pavements
sector in recent years [32]. They were also discussed frequently in the Sponge City Project.
It is therefore not surprising that the expert group participants considered this an impor-
tant factor. Public health impacts and benefits in relation to permeable pavements, and
in particular heat stress, have also emerged as a theme of rising importance in the last
10 years [33].
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4.2. The Sponge City Project as Research Context

The Sponge City Project provided an effective research context to execute this study
on market receptivity because the network and expertise of permeable pavements were
available in a collaborative Urban Living Lab setting. The project also enabled addressing
the main outcomes of the market receptivity study to stakeholders in the Dutch permeable
pavements network. In the project, one way that the key factor of trust between cooper-
ating partners was addressed was by establishing cooperation among the entrepreneurs,
researchers, and policy makers. They regularly met in consortium meetings, masterclasses,
workshops, and expert groups. This enabled the development of a joint understanding
of the many available permeable systems, which served as a common knowledge base
and reference point during the project. The Sponge City Project provided insights that
indicated that maintenance is effective to safeguard the technical functioning and reliability
of permeable systems. Operational costs were also regarded as one of the three most
important key factors for end-users. In the project, this was addressed through a societal
cost–benefit analysis that showed that regular maintenance is an effective strategy and has
a competitive cost–benefit level.

4.3. Next Research Steps: A Proposal for a “Theory of Change”

From the study results reported in this article, but also from the authors’ experience in
the Sponge City Project, the perception of end-users seems to be a strong overarching driver
for the transition from pilot projects to transformative infrastructures. Both in the system
level key factor of trust between cooperating partners, and in the technology level key
factor of reliability of technology, end-user perception plays a dominant role. Therefore, the
Theory of Change [34] was selected as a suitable framework to reflect on the research results
and develop hypotheses for further research. According to [34], “Theories of Change are
the ideas and beliefs people have—consciously or not—about why and how the world
and people change. How people perceive and understand change and the world around
them is infused by their underlying beliefs about life, human nature and society. They are
deep drivers of people’s behaviour and of the choices they make” The authors formulated
a Theory of Change for how to scale up from individual permeable pavement projects to
urban scale transformative infrastructures to implement the concept of the sponge city.
This theory is illustrated in Figure 5 and explained below.

The transition from small scale pilot projects to transformative infrastructure requires
two shifts. The first shift is from focusing on creating stakeholder awareness (informing)
towards addressing full social system potential. This can be achieved by addressing the
entire receptivity continuum, including the willingness and capacities of end-users to
design, implement, and maintain permeable pavements. Executing a societal cost–benefit
analysis over the entire life cycle of permeable pavements could potentially contribute to
this. The second shift is from studying the technical functioning of permeable pavements at
a relatively small scale towards investigating total system impact. In this project, the second
shift was made by evaluating permeable pavements in real-life settings with full-scale
testing, but also by testing and evaluating operation and maintenance strategies. Knowl-
edge distribution, education, and training can also be effective strategies to contribute to
transformative change beyond the scale of an Urban Living Lab [21]. Global sharing of best
practices through partnerships and online knowledge platforms can contribute to increas-
ing the scale and speed of climate-resilient transformations [35]. Monitoring of, learning
from, and evaluation of innovative climate projects are needed to enable innovations
to move from a niche-scale, project-based approach towards an inclusive process-based
approach in which innovations become able and equipped to compete with large-scale,
centralized, unsustainable infrastructures. Ideally, transformative infrastructures would
become an integral part of every intervention in the urban environment. The authors
propose two key factors that could play an essential role in this process. The first is replica-
tion and improvement of permeable systems. The second factor is mobilizing increased
investments and scaling up. The assessment of total life cycle costs in this project and
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evaluation of system-wide impacts could provide input to develop solid business cases,
which are needed to arrange the much larger required budgets to implement transformative
infrastructure at an appropriate speed and scale to address the urgency and magnitude of
the climate crisis that cities are currently facing.
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5. Conclusions

Climate change and changing land use challenge the livability and flood safety of
Dutch cities. One option cities have to become more climate-proof is to increase infiltration
of stormwater into the soil through permeable pavement and thus reduce discharge of
stormwater into sewer systems. Permeable pavements have been used in the Netherlands
for approximately 25 years to infiltrate stormwater runoff and to assist with recharging
groundwater in low-permeability soils.

Transformative infrastructures aim to deliver co-benefits across infrastructure sectors,
between infrastructure and the environment, and between infrastructure and inclusive
social development, and to increase spatial benefits. They have the potential to shift the
organizations that implement them towards more sustainable development trajectories.
Despite the potential of permeable pavements to contribute to transformative infrastruc-
tures in urban areas, the actual widespread adoption of this technology on an urban scale
remains limited.

To analyze market receptivity for permeable pavements, this article focuses on the
perception of end-users towards key transition factors in infrastructure transformation
processes. In these processes, the awareness, willingness, and capacities of individuals and
organizations that are expected to adopt new technologies, as well as the processes that
influence the preferences of these end-users, are essential factors. Market receptivity was
studied on two levels: (1) on the system level, by analyzing 20 key factors in the Dutch
urban water sector that enable wider application of permeable pavements; and (2) on
the technology level, by analyzing 12 key factors that explain why decision makers select
permeable pavements or not.

The market receptivity study results in this article showed that trust between cooperat-
ing partners was perceived as the system level key factor that needs to be improved most to
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facilitate the wider uptake of permeable pavements. Additionally, associations of end-users
with permeable pavement, particularly their willingness to apply these technologies and
their understanding of what kinds of benefits these technologies could bring, was regarded
the most important receptivity attribute that needs to be addressed. On the technology
level, the reliability of permeable pavement was regarded as the most important end-user
consideration for selecting this technology or not.

Building on the results of the Sponge City Project, a Theory of Change was formulated
that contains two required shifts. The first shift is from focusing on creating stakeholder
awareness towards addressing the full social system potential. The second shift is from
studying the technical functioning of permeable pavements at a relatively small scale
towards investigating the total system impact. The authors propose two key factors as
part of these two required shifts. The first key factor is replication and improvement of
permeable systems. The second factor is mobilizing increased investments in permeable
pavements and scaling up. These are expected to be key factors to implement transforma-
tive infrastructure at an appropriate speed and scale to address the urgency and magnitude
of the climate crisis that cities are currently facing.
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