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General introduction

1.1 Introduction

1.1.1 Goal

The current drug discovery pipeline can be regarded as slow and inefficient. The average time spent, from the
very start of the process until the final clinical trials, is around fourteen years [1]. The ‘attrition rate’, i.e. 1 - the
ratio approved drugs / tested compounds [2], is currently ~ 0.9873: one marketable drug emerges from
approximately eighty screened compounds (figure 1 of [3]). This high attrition rate is mainly caused by the low
success rates in the first clinical phases. In this introduction, we build an hypothesis on how this pipeline can be
shortened by the application of new genomics technologies in the drug discovery process. The first paragraphs
will discuss genomics in general, its appraisal and acceptance, including important techniques such as sequence
comparison and ortholog identification, whereas the latter paragraphs attempt to enforce the assumption that

genomics applications can improve the drug discovery pipeline in a more pragmatic way.

1.1.2 Genomics

In the past 30 years, starting with the sequencing of bacteriophage ®-X174 in 1977 [4], the genomes from
almost 300 organisms have been fully sequenced [5]. This wealth of information facilitates genome-wide
analyses that have been impossible to do before. This relatively new field within biology is generally referred to
as ‘genomics’. This term is derived from the word ‘genome’, which is a contraction created by Hans Winkler
(1920) of the words ‘gene’ and ‘chromosome’. As defined by Wikipedia [6]: “Genomics is the study of an
organism's genome and the use of the genes. It deals with the systematic use of genome information, associated
with other data, to provide answers in biology, medicine, and industry.” A whole range of —omics fields exists:
e.g. transcriptomics (dealing with RNA), proteomics (dealing with proteins), metabolomics (dealing with
metabolic pathways). This approach of connecting large biological data sets is also referred to as the ‘systems
biology’ approach, in which biology is not seen as a number of loose components, but more as a complex
system. Figure 1 shows that the use of the words ‘genomics’, ‘transcriptomics’, ‘proteomics’, ‘metabolomics’
and ‘systems biology’ in the PubMed [7] literature database has increased drastically over the past ten years,
reflecting the growing use of these techniques. Especially the popularity of the word ‘genomics’ has been
growing almost exponentially: from 0 in 1986 to 4339 (0.64% of the total number of articles) in 2005. However,
this is probably just the start, since more and more genomics data is becoming available. Figure 1 also shows
that the use of the word ‘pharmacogenomics’ does not increase as much as the other five words, displaying that
the effects of genomics have been mostly limited to fundamental science until now. Despite this observation,
genomics is expected to gain influence on applied fields such as pharmaceutics [8] and medicine [9] in the

future.
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Figure 1. Popularity of -omics search terms in the PubMed database

The percentage of articles (titles + abstracts) in the PubMed database that contain the words ‘genomics’ (black line), ‘transcriptomics’
(purple line), ‘proteomics’ (blue line), ‘metabolomics’ (green line), ‘systems biology’ (red line) or ‘pharmacogenomics’ (orange line).
Horizontal axis: year. Vertical axis: number of articles that contain that specific search term, divided by the total number of articles

published in that year (in %). Color version on page 146.

1.1.3 Comparative genomics

Genomics opens doors to new ways of research and novel methodologies, such as the usage of all-against-all
sequence comparisons [10]. These all-against-all sequence comparisons can be applied for cross-species
analyses, which are summarized by the term ‘comparative genomics’: the study of relationships between the
genomes of different species. Examples of comparative genomics methodologies include pairwise and multiple
sequence alignments, phylogenetic trees, phylogenetic patterns [11] and gene order conservation [12]. The main
goal of comparative genomics is to gain a better understanding of how species have evolved and to determine
the function of genes and non-coding regions of the genome of a certain species, by using the information from

the genomes of other species.

Comparative biology, and subsequently comparative genomics, originated in comparative embryological studies
performed in the nineteenth century, mainly by Ernst Haeckel. According to these studies different vertebrates
show strikingly similar developmental stages, regardless of the taxon concerned. Although the credibility of
Haeckel’s work on embryological evolution has been undermined by recent findings [13], the main conclusions
from his work are still valid, and his (and other) work on embryology and evolution has had large consequences.
Extrapolation of experimental evidence from model-organisms allowed a detailed understanding of human
embryology. Together with natural occurring mutants with congenital defects, many developmental pathways in

different species have been discovered. Since thirty years, it has been possible to not only study the
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embryological phenotypes, but also the underlying molecular mechanisms. This new field is called evolutionary

developmental biology, or 'evo-devo' [14].

The major principles of comparative genomics are straightforward [15]. Common features of multiple
organisms will often be encoded within the DNA that is conserved between the species. More accurately, the
DNA sequences encoding the RNA sequences and proteins responsible for functions that were conserved from
the last common ancestor should be preserved in contemporary genome sequences. Likewise, the DNA
sequences controlling the expression of genes regulated similarly in two related species should be conserved as

well [16]. Conversely, regulatory elements responsible for interspecies differences will themselves be divergent.

Due to the large amounts of data analyzed in the field of comparative genomics, the application of computers is
essential. This is why the terms ‘computational genomics’ and ‘comparative genomics’ are sometimes
interchanged erroneously. Computational genomics refers simply to genomics studies that are carried out in
silico completely, while comparative genomics refers to a much wider range of genomics studies, carried out

over multiple species.

1.2 Orthology

1.2.1 Introduction

Homology is a very important concept in evolutionary biology, phylogenomics and comparative genomics. The
concept arose within comparative morphological and paleontological systematics around 150 years ago and was
later on used in evolutionary biology as synapomorphic similarity inherited from a common ancestor [17]. In
genomics, it refers to two or more genes or proteins that share a common ancestor. Homology is usually
measured by the rate of similarity at the sequence level. Although two very similar sequences do not necessarily
need to be homologs, and two proteins that are very dissimilar can be homologs, this sequence similarity is still

considered to be a quite reliable measurement [18].

Homology can be subdivided into orthology, paralogy and xenology. The term orthology describes the
evolutionary relationship between homologous genes whose independent evolution reflects a speciation event,
whereas paralogy refers to genes that have diverged from a common ancestor through a gene duplication event
[19]. Orthology is often misused as a description of functionally equivalent genes in different species. Orthologs
do not necessarily have the same function, although they are very likely to have a functional similarity.
Orthologous genes are more likely to have a functional similarity than paralogous genes, which have often
undergone changes in substrate or ligand specificity [20, 21]. Figure 2 explains these concepts through the
evolution of the globin gene. The third subdivision of homology, xenology, refers to homology that arises via

horizontal (or lateral) gene transfer between unrelated species [22].
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Figure 2. The concepts of homology, orthology and paralogy explained by the example of the globin gene
Orthologs and Paralogs are two types of homologous sequences. Orthology describes genes in different species that derive from a common
ancestor. Orthologous genes may or may not have the same function. Paralogy describes homologous genes within a single species that

diverged by gene duplication.

1.2.2 Functional annotation

The high level of functional conservation between orthologous proteins makes orthology highly relevant for
protein function prediction. It is also widely used in genome analysis, where the information about a protein in
one species is used for the functional annotation of the orthologous protein in another species. Figure 3 shows
that currently about 42.4% of the human genes have an unknown molecular function. By defining orthologous
relationships between genes in model organisms that have a known molecular function and these human genes,
we are able to transfer the function to the human gene with a high degree of certainty. This is known as
'homology-based function prediction' [23]. Of course, there is a large chance that both genes in an orthologous
pair have an unknown function. By creating orthologous groups, in which multiple species are included, this
chance can be decreased: in many cases, at least one of the genes in one of the species has a function assigned,
which makes it possible to assign this function to all of the genes in the orthologous group [24]. Homology-
based function prediction should be regarded as a supplement to experimental annotation, since it is less reliable
[25, 26] and needs at least one of the genes or proteins in an orthologous group to have an experimental

annotation.

10



General introduction

Signaling molecule, 783, 3.3%, 2.8% Chaperane, 192, 0.6%, 0.7% Cell junction protein, 95, 0.4%, 0.3%
Cell adhesion molecule, 383, 1.6%,
Protease, 531, 2.3%,1.9% Mucleic acid binding, 2521, 10.5%, 1 .49

91%

/

Oxidareductase, 582, 2.5%, 2.1%
Lyase, 156, 0.7%, 0.6%

Kinase, 658, 2.8%, 2.4%

|lzomerase, 185, 0.8%, 0.7%
Mizcelaneous function, 822, 3.5%,
30%
Transferaze, 847, 3.6%, 3.1%
Transfericarrier protein, 303, 1.3%,
11%

lon channel, 337, 1 4%, 1.2%

Select calcium hinding protein, 247,
1.1%, 08%
Cytoskeletal protein, 813, 3.5%, 29%
Membrane traffic protein, 346, 1 2%,
1.2%
Select regulstory molecule, 1152,

4.9%, 4.2% Yiral protein, 10, 0.0%, 0.0%

Transporter | B17, 26%, 2.2%

Synthasze and synthetase, 223 1 0%,
0.8%

/—Extracenmar matrix, 356, 1 5%, 1.3%

=

Transcription factor, 1874, 5.0%, 6.5%

Receptor, 1427 6.1%, 5.2%

——Phosphataze, 256, 1 ,1%, 09%

Y Defenselmmunity protein, 362, 1.5%,
1.3%

Hydrolase, 682, 2.9%, 2.5%
Ligase, 418,1.8%,1.5%

Molecular function unclassified, 9918,
42.4%, 35.8%

Figure 3. Distribution of the 27,686 molecular functions of 23,401 human genes
Each slice lists the number of human gene functions assigned to a given category of molecular function (in brackets: percentages of total
number of molecular functions and of total number of genes). The categories are provided by the Panther classification from Applied

Biosystems [27].

1.2.3 Ortholog identification methods

Several methods have been developed for finding orthologous relationships. Most methods rely on sequence
identity or similarity. The easiest method is the ‘best bidirectional hit’ or ‘best reciprocal hit’ method. This
method needs as input a list of all genes in genome A compared to all genes in genome B, and vice versa. The
best hit for gene Al from genome A in genome B is detected: gene B1. If the comparison of gene B1 with
genome A returns the same gene Al, these two genes are considered to be best directional hits and thus
orthologs. There are other ortholog identification methods that are extensions to this approach, like InParanoid
[28] and its successor MultiParanoid [29]. These methods do not only find the best bidirectional hits, but also
check for paralogs within the genomes and co-orthologs between the genomes. This resembles the reality of
evolution much better, because it allows for one-to-many and many-to-many orthologous relationships. Other
methods such as COG [30] and OrthoMCL [31] use cluster algorithms to create orthologous groups. Some
algorithms do not only rely on pairwise sequence comparison but also on an extra step consisting of multiple
sequence alignment and/or phylogenetic trees. Examples of this are the Phylogenetically Inferred Groups
(PhIGs) [32] and COCO-CL [33]. Finally, there are methods that use synteny information for detecting
orthologous pairs. Genes are often conserved in clusters over the genome, which means that the genomic
context of a gene can help in finding orthologs. The Homologene [34] method is an example of an algorithm in

which sequence comparison is used in combination with synteny information.
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1.3 Sequence comparison

1.3.1 Introduction

As discussed in the previous section, sequence comparison constitutes the basis for most of the ortholog
identification methods. It enables researchers to find proteins with a high similarity, which are highly probable
to be homologous [18]. The field of sequence comparison originated in the development of protein-sequencing
methods in the 1950s [35] and the assembly of protein sequence databases in the 1970s (PIR, [36]). These
protein sequence databases were followed in the 1980s by DNA sequence databases in the USA (GenBank,
[37]), Europe (EMBL, [38]) and Japan (DDBJ, [39]). In the beginning, these databases could be searched only
by text queries, but later versions included the possibility to enter a sequence query and search the database
using a sequence comparison algorithm. This was done using a pairwise sequence comparison. In pairwise
sequence comparisons, only two genes or proteins are compared to each other. A second method of sequence
comparison is the multiple sequence alignment, through which complete gene families can be aligned to each

other.

1.3.2 Pairwise sequence comparison

Pairwise sequence comparisons have been widely used since 1970, when Needleman and Wunsch invented their
Needleman-Wunsch algorithm [40]. This algorithm is a ‘global alignment’ algorithm, which means that the two
input sequences are being aligned to each other completely, even when there are parts in the sequences that are
very difficult to align. A different and more popular way of sequence alignment is the ‘local alignment’, where
only stretches of the two sequences are being aligned. A local alignment algorithm stops aligning when it
reaches the point where the two sequences cannot be aligned anymore in a right way. The first local alignment
algorithm was the Smith-Waterman algorithm [41], created in 1981. Both the Needleman-Wunsch and the
Smith-Waterman algorithm make use of ‘dynamic programming’, a concept from computer science that is very
applicable to biological systems. It has the desirable property that it is guaranteed to find the optimal local
alignment with respect to the scoring system being used. The main difference of the Smith-Waterman algorithm
to the Needleman-Wunsch algorithm is that negative scoring matrix cells are set to zero, which renders the local
alignments visible. The motivation for local alignment is the difficulty to obtain correct alignments in regions of
low similarity between distantly related biological sequences, because mutations have added too much 'noise' in
evolutionary times to allow for a meaningful comparison of these regions. Local alignment avoids these regions
altogether and focuses on those with a positive score, i.e. those with an evolutionary conserved signal of

similarity.

A large disadvantage of the Smith-Waterman algorithm is that it is fairly compute intensive. As a result, it has
largely been replaced in practical use by faster heuristic algorithms such as FASTA [42] and BLAST [43].
Although not guaranteed to find optimal alignments, these are much more efficient, which explains their

popularity over the past 15 years. However, since compute power is doubling every two years according to
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Moore’s law [44], the Smith-Waterman algorithm is gaining popularity again, despite its greedy character. We
used the Smith-Waterman implementation to create an all-against-all sequence comparison database named
Protein World [45], which was the main dataset for our ortholog benchmarking study mentioned in the previous

paragraph.

1.3.3 Multiple sequence alignment

As has been mentioned, some ortholog identification methods require the calculation intensive steps of multiple
sequence alignment and phylogenetic tree building to be done. In a multiple sequence alignment more than two
sequences can be aligned, making possible identification of conserved sequences (motifs). The most similar
sequences are aligned first, after which the less related sequences are added successively to the alignment until

the entire query set has been incorporated into the solution.

The most widely used program for doing multiple sequence alignments has, for a long time, been ClustalW [46].
This algorithm consists of three main stages: (I) all pairs of sequences are aligned separately in order to
calculate a distance matrix giving the divergence of each pair of sequences; (II) a guide tree is calculated from
the distance matrix; (III) the sequences are progressively aligned according to the branching order in the guide
tree. Alignment can be achieved by either fast approximate alignments or full dynamic programming for the
distance calculations used to make the guide tree. The past years several alternatives for ClustalW have been

created, such as T-Coffee [47], MAFFT [48] and MUSCLE [49].

T-Coffee [47] is slower than ClustalW but generally produces more accurate alignments for distantly related
sequence sets. T-Coffee uses the output from ClustalW as well as another local alignment program LALIGN,
which finds multiple regions of local alignment between two sequences. The resulting alignment and

phylogenetic tree are used as a guide to produce new and more accurate weighting factors.

MAFFT (Multiple Alignment by Fast Fourier Transform) [48] is a very fast alternative to ClustalW and T-
Coffee. MAFFT includes two novel techniques: (I) homologous regions are rapidly identified by the fast Fourier
transform (FFT), in which an amino acid sequence is converted to a sequence composed of volume and polarity
values of each amino acid residue; (II) a simplified scoring system that performs well for reducing CPU time
and increasing the accuracy of alignments even for sequences having large insertions or extensions as well as

distantly related sequences of similar length.

MUSCLE (MUltiple SequenCe alignment by Log-Expectation) [49] is a so-called iteration-based multiple
alignment program, because it repeatedly realigns the initial sequences as well as adding new sequences to the
growing multiple sequence alignment. Progressive methods such as ClustalW are strongly dependent on a high-
quality initial alignment: once a sequence has been aligned into the multiple sequence alignment, its alignment
is not considered further. This approximation improves efficiency at the cost of accuracy. By contrast, iterative

methods can return to previously calculated pairwise alignments or sub-MSAs incorporating subsets of the

13
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query sequence as a means of optimizing a general objective function such as finding a high-quality alignment

score.

A multiple alignment is often followed by the creation of a phylogenetic tree, from which evolutionary
relationships (such as orthology, paralogy and xenology) between the studied proteins or genes can be inferred.
Figure 4 shows a part of a multiple alignment of human toll-like receptors, together with a phylogenetic tree

(both created by ClustalW).
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4
2
\ _—
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71’?70
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* e e ke . * K * .

Figure 4. Example of multiple alignment and phylogenetic tree

Part of ClustalW multiple alignment (left) and phylogenetic tree (right) of human toll-like receptors.

1.4 Phylogeny

1.4.1 Phylogeny of genes/proteins

As shown in the previous paragraph, building a phylogenetic tree is a logical step after doing a multiple
alignment. Phylogenetics is the field concerning the study of evolutionary relatedness, either among groups of
organisms or among groups of genes/proteins. The phylogenetic tree in figure 4 shows the evolutionary relations
between groups of proteins. It is generated by ClustalW using the neighbor-joining method [50]. This method is
based on the minimum evolution criterion for phylogenetic trees, i.e. the topology that gives the least total
branch length is preferred at each step of the algorithm. However, neighbor-joining may not find the true tree
topology with least total branch length because it is a greedy algorithm that constructs the tree in a step-wise
fashion. Even though it is sub-optimal in this sense, it has been extensively tested and usually finds a tree that is
quite close to the optimal tree. Another method for calculating phylogenetic trees from multiple alignment is the
UPGMA method [51], but this method is not as good as the neighbor-joining method in terms of minimizing the
effects of unequal evolutionary rates in different lineages and giving better estimates of individual branch

lengths.

1.4.2 Phylogeny of species
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Phylogenies can also be made for species or groups of species. The field of evolutionary relationships between
organisms, and their classification, is usually referred to as ‘taxonomy’. One of the most popular taxonomy
databases is NCBI taxonomy [34]. In the past the classification was simply done by looking at an organism’s
phenotypes. Nowadays the genomics can help in finding the correct ‘tree of life’. For example, species can be
compared to each other in the number of shared genes, which is a measure for evolutionary relatedness. Or one
can simply look at the level of sequence identity between two organisms: e.g. human and chimpanzee have an

overall sequence identity as high as 98%, which makes them very close relatives.

1.4.3 Phylogenetic patterns

One of the advantages of the sequencing of complete genomes, is that one can now see what gene sets occur in
which species. This is named ‘phylogenetic occurrence’ and has been incorporated in applications like STRING
[12]. The presence or absence of certain genes in certain species can be used to calculate the evolutionary
distance between these species: the more similar the ‘phylogenetic pattern’ of species A to the pattern of species
B, the smaller the evolutionary distance. These phylogenetic patterns can also be used in a different way: by
looking at the patterns of the genes instead of the species (figure 5). This gives much information on the studied
gene. For example, if it is present in all species (gene F), the gene is very likely to have an important function. If
it is present in only a certain evolutionary branch, it is probably involved in a function that is important in only
that branch (genes A, B, E). Genes that have a perfect correlation might be functionally related (genes A, B).
Two phylogenetic patterns with a perfect anti-correlation (gene A, B vs. E or gene C vs. D) could be completely
different in function, but it could also be possible that they are analogous to each other. Analogous proteins do
not have a common ancestor (i.e. are not homologous) but they are (like orthologs) performing the same

function in different species.

Gene A | GeneB | GeneC | Gene D | Gene E | Gene F
Species A 1 1 1 0 0 1
Species B 1 1 0 1 0 1
Species C 1 1 1 0 0 1
Species D 0 0 0 1 1 1
Species E 0 0 1 0 1 1
Species F 0 0 0 1 1 1

Figure 5. Small example of the usage of phylogenetic patterns

Phylogenetic patterns of six genes over a species tree consisting of six species. 1 = present, 0 = absent.

1.5 Drug discovery

1.5.1 Introduction

Drug discovery is the process by which drugs are discovered and/or designed. This process involves the

identification of molecular targets or systems, chemical entities which can modify these targets or systems,
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Chapter 1



Chapter 1

optimization of structure/function characteristics, pharmacology, toxicology, and finally clinical testing of drug
candidates. Once a compound has shown its value in these tests, it will enter the process of clinical trials. The
complete drug discovery process as performed nowadays can be divided into two major steps: a research step

and a development step (figure 6).

Research Development
> >

30% 65% 55% 55% 70% 50% 65% 95%
Target Lead Lead Pre-

disco Identif optimi clini Phase Phase Phase Phase Phase Phase

very ication zation cal 0 I ITa 1Ib 11T v

—> > —> —> > —>
2y 4y 1y ly 2%y 2%y
l J
Proof of Concept (PoC)

Figure 6. The standard drug discovery pipeline, with the estimated times (in years) [52] and the success rates [53]

The research step itself can be subdivided into four stages: (I) Target discovery: the identification of a biological
drug target. This is typically a receptor, enzyme or ion channel that needs to be manipulated to prevent the
development of a disease or alleviate symptoms [54]. The availability of new techniques known as genomics
and bioinformatics (derived from new knowledge of the human genome) now allows scientists to identify genes
coding for potential drug targets of interest. (II) Lead discovery/identification: the development of an assay for
the selected target. As new targets are identified, new assays must be developed. Compounds are screened in
such assay to find out whether they have any activity on the selected target. This screening is performed by a
robotic technology known as ‘high throughput screening’ (HTS). (II) Lead optimization: compounds found
likely to show activity on the target (known as ‘hits”) are identified as ‘lead compounds’ and pass to the next
stage of lead optimization. Compound properties as potency, selectivity, bioavailability, absorption and
metabolism must be assessed. This is achieved by complex functional assays and analytical chemistry. At the
same time, lead compounds and their relatives must be synthesized, their molecular structure defined, and their
molecular targets constructed. All this is achieved by the use of such advanced techniques including computer
assisted drug design and 3D molecular modeling. In addition, the pharmacological profile of the compound is
completed and chemical and pharmaceutical feasibility evaluated. (IV) Pre-clinical stage: the drug’s

pharmacologic and toxic effects are tested in vivo, using animal models.

The development stage consists of several trials on human subjects. Usually, the process is split up into either
three or four phases, simply named phase I, phase II and phase III [55], and sometimes an extra phase IV [56].
(I) In phase I a small group (10-80) of healthy volunteers is selected. This phase includes trials designed to
assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of a therapy. Phase I trials also
normally include dose-ranging studies so that doses for clinical use can be refined. The tested range of doses is
usually a small fraction of the dose that causes harm in animal testing (pre-clinical stage). (II) Phase II trials are

performed on larger groups (100-300) and are designed to assess clinical efficacy of the therapy. The
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development process for a new drug often fails during phase II trials due to the discovery of toxic effects or low
efficacy. Phase II studies are divided into phase IIA and IIB. Phase IIA is specifically designed to study
efficacy, whereas phase IIB is specifically designed to assess dosing requirements. (III) Phase III trials are
performed on large patient groups (>1,000) and are aimed at being the definitive assessment of the efficacy of
the new therapy, especially in comparison with currently available alternatives. These trials are the most time-
consuming, expensive and difficult trials to design and run; especially in therapies for chronic conditions. (IV)
Phase IV trials involve the post-launch safety surveillance and ongoing technical support of a drug, mandated by
regulatory authorities or undertaken by the sponsoring company for competitive or other reasons. Post-launch
safety surveillance is designed to detect any rare or long-term adverse effects over a much larger patient
population and timescale than was possible during phase I to IIl. Such adverse effects detected by Phase IV

trials may result in the withdrawal or restriction of a drug.

The above mentioned stages and phases are certainly not rigid; they are almost continuously subject to changes,
and different companies use different pipelines. Overmore, some companies use some additional terminology to
describe extra phases or umbrella phases. An example of an extra phase is the ‘phase 0°, in which only a small
dose of the tested drug is administered to a small number of human subjects (‘microdosing’, [57]). This step
takes place just before the other clinical trials (I to IV). An example of an umbrella phase is the ‘Proof of
Concept’ or ‘PoC’ phase, which usually refers to the total process of lead optimization, pre-clinical phase, and

phase I and IIA trials.

The largest problem in drug discovery is the high attrition rate due to toxicological effects in the phases I to IV,
where the costs are extremely high when a trial fails or when the drug is withdrawn from the market, as has
happened for example with Vioxx [58] and Pondimin/Redux [59]. A possible solution lies in the application of
the new field of translational medicine and therapeutics [3]. This new discipline attempts to more directly
connect basic research to the clinical development stages, by early implementation of basic scientific
technologies in clinical studies and vice versa. The emphasis is on the linkage between the laboratory and the

patient's bedside, often called the ‘bench to bedside’ definition.

1.5.2 Pharmacogenomics

As stated in the first paragraph, genomics can be used to unravel systems in biology, medicine and in the field of
drug discovery, which can be useful for fundamental science but can also be applied in industry. The
combination of genomics and pharmaceutics is named ‘pharmacogenomics’ or, in short, ‘PGx’ [60] and has an
application in medicine and industry [61]. Different definitions of pharmacogenomics exist, but one of the most
used definitions states that “pharmacogenomics seeks to apply the field of genomics to improve the efficacy and
safety of therapeutics” [62]. In other words: “pharmacogenomics uses genome-wide approaches to elucidate the
inherited basis of differences between persons in the response to drugs” [63]. Pharmacogenomics researchers try
to achieve this improvement in drug safety and efficacy by the discovery of biomarkers. A biomarker is a
characteristic that is objectively measured and evaluated as an indicator of normal biological processes,

pathogenic processes, or pharmacological responses to a therapeutic intervention [64]. Biomarkers can be used
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to validate novel drug targets and predict drug response, thereby reducing attrition of drugs during the clinical
phases of drug development. The field of pharmacogenetics, which is often erroneously interchanged with
pharmacogenomics, actually refers only to to genetic-based testing to determine patient therapy, in clinical
phase I to IV and later stages. An example of the successful implementation of pharmacogenetics is the FDA
approved AmpliChip CYP450 by Roche diagnostics, based on cytochrome P450 genotyping [65,66]. Using
pharmacogenetics, drug therapy can be optimised with respect to the patient’s genotype, to ensure maximum
efficacy with minimal adverse effects [67]. Pharmacogenetics is thus part of pharmacogenomics. The past ten
years, pharmaceutical companies have been trying to implement pharmacogenomics into their drug discovery
pipeline. It is especially useful in the context of genome-wide expression data and their correlation with a drug’s

efficacy.

1.5.3 Toxicogenomics

Another —genomics field that is important in drug discovery, especially when dealing with adverse effects, is
‘toxicogenomics’ or ‘TGx’, which can actually considered to be a part of pharmacogenomics. Toxicogenomics
is defined as “the science of using gene expression profiling from xenobiotic-treated cells or tissues to describe
and/or predict various toxic outcomes” [68]. Or defined in a different way: “Toxicogenomics studies toxic
effects of substances on organisms in relation to the composition of the genome” [69]. Currently, the premier
toxicogenomics tools are the DNA microarray and the DNA chip, which are used for the simultaneous
monitoring of expression levels of thousands of genes [70]. Toxicogenomics is especially important in the last
step of the research stage of the drug discovery process: the pre-clinical step, in which drugs are tested on model

organisms.

1.5.4 Genomics and target discovery

Pharmacogenomics and toxicogenomics are used mainly in the later steps of the research stage of the drug
discovery process. However, the main application of genomics in drug discovery lies in the very first step of this
process: the finding of interesting drug targets. Genomics is important in this ‘target discovery’ step because of
the large number of potential druggable targets in the human genome (the so-called ‘druggable genome’ [71]):
between 2000 and 3000 [72]. This number is based on the sizes of druggable gene families such as G-protein-
coupled receptors, nuclear receptors, ion channels and kinases. It is probably still a conservative estimation,
because small-molecule targets and antibody targets have not been included. Current drug therapy is based on
less than 500 molecular targets [73], which leaves many new drug targets to be found by genomics techniques.
Genomics-based discovery of novel drug targets is however dependent on a good hypothesis that can be

addressed through experimental manipulation and the availability of good biological models [74].

1.6 Application of orthology in drug discovery

1.6.1 Model organisms
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The concept of model organisms emerged in the beginning of the last century [75], in which mouse, corn,
Drosophila and Paramecium were studied. These species were followed in the forties by species such as S.
cerevisiae, E. coli, C. elegans and A. thaliana. The impact of model organisms was large, especially in the field
of genetics, in which many scientists were thinking about their research organisms as representatives of living
things in general. Now we know that this is not a realistic view, since the differences between species won’t
allow extrapolating research findings from one species to all species. However, since the sequencing of model
organisms such as fruit fly [76], worm [77], mouse [78], rat [79], and chicken [80] and the completion of the
Human Genome Project [81], we know that the level of similarity on the genome level between man and model
organisms can be very high. This similarity is supported by some experimental evidence: many signaling
pathways that were once thought to define humans are actually conserved in model organisms. A C. elegans
nematode placed on the antidepressant fluoxetine has increased serotonin levels in its brain [82]. The set of
genes responsible for Alzheimer’s disease in mouse seems to be similar to those in man [83]. Many biological
processes, including those that are relevant to human diseases, are highly conserved between humans and
Drosophila [84]. In the past, model organisms were picked to study specific biological systems, like neural
development in C. elegans and inheritance in D. melanogaster [75]. Nowadays, they are utilized in a much
broader sense because of the completed sequencing of their genomes. New model organisms are chosen for their
evolutionary importance (e.g. C. intestinalis, the vertebrate ancestor), which makes them suitable for
comparative genomics studies, or because of their importance to society (e.g. rice). Another important use of
model organisms lies in the testing of drugs by pharmaceutical companies, in stage IV of the research phase of

the drug discovery pipeline.

1.6.2 Pharmacophylogenomics

In spite of the high genetic similarity between man and some model organisms, there is, of course, no species
that is the perfect model organism for man. Sometimes a drug that works excellent in a model organism, does
not work at all in humans. Or the drug can have several side effects that are absent in the model organism. The
concept of orthology plays an important role in understanding why these interspecies differences in response to
a certain drug occur. By determining orthologous genes and proteins between the model organism and human,
we are able to map the molecular pathways in both species in which this drug is present. This recent
combination of phylogenomics and pharmacology has been named ‘pharmacophylogenomics’ [85]. In the past
several pathways, like the citric-acid cycle [86], have been studied successfully in multiple genomes, creating an
understanding of the cross-species differences in these pathways. Databases like the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [87] enable researchers to perform analyses like these in a straightforward
manner. The KEGG database makes use of orthology to map one or more proteins from species A to one or
more proteins in species B. This orthology determination, however, can be performed in several ways. The
quality of the orthology identification determines if any interspecies differences in response to a drug can be

explained successfully.
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The major goal of pharmacophylogenomics is to reduce the attrition rate of the drug discovery process. This
reduction can be obtained by offering guidelines regarding the druggability of targets: by looking at the
evolutionary history of a target, it can suggest a number of possible target ‘property filters’, e.g. degree and
nature of paralogy, breadth of expression, interaction potential and evolutionary rates [85]. This way,
pharmacophylogenomics should be able to increase the predictive value of pre-clinical studies.
Pharmacophylogenomics is thus applied mainly in the early stages of the research phase (figure 6), when
rejecting a compound costs much less time and money than when it is already in the development phase.
Besides reducing the attrition rate, it tries to shorten the whole drug discovery pipeline; new genomics
techniques should be able to make this timeline shorter than the currently common fourteen years [1]. It must be
made clear, however, that the field of pharmacophylogenomics is still in it earliest stage. It certainly holds a

promise, but it still needs to prove its value in the upcoming years.

1.7 Thesis outline

This thesis focuses on the concept of orthology, its methodology and its applications.

In chapter 2 we compare the quality of six popular methods for the identification of orthologous proteins. We
use the rule that orthologous proteins should have highly similar functions, and compare these methods by using
functional genomics data, such as expression data, protein interactions, protein domains and gene order. This
gives a clear view of what ortholog identification method to use in what case: some methods are more sensitive
but less selective, while others are more selective but less sensitive.

In chapter 3 some pairwise sequence comparison methods and statistical significance scores are tested on how
well they predict structural similarities. We compare the Smith-Waterman implementations SSEARCH [88],
Biofacet [89], ParAlign [90] and Paracel [91], as well as FASTA [42] and BLAST [43]. The Biofacet z-score is
compared with the e-value of the other algorithms. This makes clear what sequence comparison method and
what statistical significance score to use, taking into account the quality of the method as well as time limiting
factors.

In chapter 4 we present a web application named PhyloPat that gives the user the possibility to input a
phylogenetic pattern and check which genes have that phylogenetic pattern. The database behind the application
has been constructed using a set of 21 fully sequenced genomes, available through the Ensembl [92] database.
The single linkage clustering based on many-to-many orthologous relationships provided by Ensembl is very
accurate and reliable, and creates phylogenetic clusters that can be used for more kinds of evolutionary research
than phylogenetic pattern studies alone. For example, it makes possible the study of expansions or deletions of
certain phylogenetic lineages.

Chapter 5 discusses a study on the evolution of the immune system from model organism to man. This includes
all proteins that are in some way connected to the immune system in man and model organisms such as
macaque, mouse, rat, dog and chicken.

In chapter 6 we will have a look at the evolutionary dynamics of bidirectional gene pairs, i.e. two genes sharing
a promoter sequence that is lying in between the two genes in the genome. These bidirectional (or head-to-head)

gene pairs are remarkably abundant in the human genome: much more than 25% of the human gene pairs have a
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head-to-head orientation. If there would not be any orientation preference, there would be 25% head-to-head
genes, 50% head-to-tail/tail-to-head genes and 25% tail-to-tail genes. Using orthology, we check if these head-
to-head gene pairs are still lying in the same orientation in other vertebrate genomes. Furthermore, we check if
these head-to-head genes are in close proximity to each other. The sharing of a promoter sequence is much more
likely when there is only 600-1000 bp in between the two genes.

Chapter 7 discusses the cross-species connection of transcriptional units, i.e. groups of EST and mRNA
sequences that actually belong to one single gene. These gene oriented sequence clusters (transcriptional units)
will provide possibilities to identify alternative transcription, SNPs or sequencing errors if sufficient sequences
are available. We present a set of algorithms that allows construction of these transcriptional units. To compare
the transcriptional units from different species, we need to connect them by using ortholog identification
methods such as best bidirectional hit. We compare our set of transcriptional units to Unigene clusters to see
which approach is best, and check if our method still needs to be improved.

Chapter 8 gives a short discussion to this thesis, with some concluding remarks.
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Benchmarking ortholog identification methods using functional genomics data

2.1 Abstract

2.1.1 Background

The transfer of functional annotations from model organism proteins to human proteins is one of the main
applications of comparative genomics. Various methods are used to analyze cross-species orthologous
relationships according to an operational definition of orthology. Often the definition of orthology is incorrectly
interpreted as a prediction of proteins that are functionally equivalent across species, while in fact it only defines
the existence of a common ancestor for a gene in different species. However, it has been demonstrated that
orthologs often reveal significant functional similarity. Therefore, the quality of the orthology prediction is an
important factor in the transfer of functional annotations (and other related information). To identify protein

pairs with the highest possible functional similarity, it is important to qualify ortholog identification methods.

2.1.2 Results

To measure the similarity in function of proteins from different species we used functional genomics data, such
as expression data and protein interaction data. We tested several of the most popular ortholog identification
methods. In general, we observed a sensitivity/selectivity trade-off: the functional similarity scores per
orthologous pair of sequences become higher when the number of proteins included in the ortholog groups

decreases.

2.1.3 Conclusion

By combining the sensitivity and the selectivity into an overall score, we show that the InParanoid program is

the best ortholog identification method in terms of identifying functionally equivalent proteins.

2.2 Background

Orthology is one of the central concepts of comparative genome analysis, but is often misused as a description
of functionally equivalent genes in different species. By definition, the term describes the evolutionary
relationship between homologous genes whose independent evolution reflects a speciation event, whereas
paralogy refers to genes that have diverged from a common ancestor through a gene duplication event [1].
Orthologous genes are more likely to have a functional similarity than paralogous genes, which have often
undergone changes in substrate or ligand specificity [2,3]. The high level of functional conservation between
orthologous proteins makes orthology highly relevant for protein function prediction. It is also widely used in
genome analysis, where the information about a protein in one species is used for the functional annotation of
the orthologous protein in another species. At the level of protein-protein interactions, for example, it allows

networks of orthologous sequences to be investigated to detect conservation of processes and pathways.
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So far, the genomes from more than 200 organisms have been fully sequenced. Of particular interest for medical
research are the full genome sequences of human and model organisms, such as fruit fly, worm, mouse, rat, and
chicken. Genome sequencing projects on other model organisms, such as the chimpanzee [4], are also close to
completion. Identification of orthologous relationships between these model organisms and human allows the

functional annotation of a model organism protein to be transferred to its human ortholog.

Given the large amount of data, automated determination of orthology relations is an absolute requirement for
an optimal knowledge transfer between the proteins and pathways from different species. Several ortholog
identification methods have been described that use sequence comparisons, for example, Clusters of
Orthologous Groups (COG) [5], InParanoid [6] and OrthoMCL [7]. One of the most striking differences
between the various methods and databases is the level of inclusiveness: the number of proteins from one
species that is considered to be part of the same orthologous group. For the best bidirectional hit (BBH) method
this number is one, except for theoretical cases where two proteins from species A have the same score to a
protein from species B or when one considers fusion or fission of genes [8]. In the euKaryotic Orthologous
Groups (KOG) database [9], this number can easily become larger than 100 proteins, for example, for trypsin
(KOG3627) in Homo sapiens. The reasons for this difference in inclusiveness are twofold. Firstly, there are
differences between the algorithms being employed, such as bidirectional best hits, the triangular best-
bidirectional hits scheme of the COGs [5], the graph-clustering program OrthoMCL [7], the sequence similarity
based InParanoid [6], or a phylogenetic tree algorithm [10]. Secondly, some databases include a wider
phylogenetic array of species than others. To give one example, the KOG database [9] aims to include all
sequenced eukaryotes. In such a situation, genes resulting from relatively recent gene duplications, like those in
the lineage leading to the mammals, will all be part of the same orthologous group. In a database that includes
only the mammals, for example, a version of InParanoid that compares mouse and human, these genes will
likely be split into different orthologous groups. Comparing only recently diverged species, therefore, allows

one to obtain a higher level of evolutionary, and possibly also functional, resolution.

The various published orthology identification methods have led to the recognition that it would be useful to
compare these algorithms and use the consistency in the predicted orthologous relations as a measure of
reliability [11]. Additionally, several procedures have been proposed to test the reliability of orthology
prediction from a single method [6,12]. It has even been proposed that one could actually use functional
genomics data to assess the reliability of orthology prediction algorithms to predict functional equivalent genes
[13]. However, consistency in the prediction is no measure of statistical or biological significance and the
comparison of several ortholog identification methods using functional genomics data is, to the best of our
knowledge, a complete new approach to the problem. Here we define and follow a strategy to test the quality of
several currently used ortholog identification methods to identify functionally equivalent proteins.
Unfortunately, there is no 'gold standard' of protein function that can be used to benchmark ortholog
identification methods, as experimentally determined functions are only known for a very small fraction of the
proteins in the sequenced genomes. Hence, assessing the quality of different methods currently used is not a
straightforward exercise. In our strategy, we use the assumption that functionally equivalent orthologs should

behave similarly in functional genomics data [14]. This aspect of conservation of function can be measured in
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several ways: by similar expression profiles (tissue distribution or regulation), conservation of co-expression,
identical domain annotation, conservation of protein-protein interaction or involvement in similar processes
(pathways). All of these properties are used here to benchmark the quality of several commonly used ortholog
identification methods. The outcome of this benchmark will be useful for determining which ortholog
identification method should be used to identify orthologous relationships. Moreover, it gives an idea of which
methods are good at predicting different kinds of functional conservation. Some methods appear to be good at
predicting conservation of co-expression, while others more accurately predict the conservation of the molecular
function. Which ortholog identification method one should use depends on the kind of functional annotation that
is to be transferred from one protein to the other. Here we show some examples of the differences between the
various kinds of functional conservation in relation to the type of ortholog identification. As a start for building
a 'gold standard' of protein function, we also included a comparison with a reference set of 'true orthologs'

consisting of five well-studied protein families.

2.3 Results

2.3.1 Direct conservation of functional parameters

First, we measured the conservation of functional parameters between orthologous proteins, examining direct
correspondence between human and mouse/worm proteins (figures 1 and 2). This conservation was measured by
comparing the expression profiles that provide information about the functional context of a protein (figure 1)
and the InterPro accession numbers, which provide information about the molecular function of a protein (figure
2). We determined the correlation in tissue expression patterns between the human-mouse and human-worm
orthologous pairs from the six benchmarked methods (figure 1). Note that only proteins for which gene
expression data exist are included in this analysis. This is shown by the lower average proteome sizes in,
especially, the human-worm analysis, for which it was difficult to map the expression data to the Protein World
data. For the human-mouse analysis, this was less difficult. For the three group orthology methods, InParanoid
(INP), KOG and OrthoMCL (MCL), a second calculation method was used, which only takes into account the
best scoring pair within a group. An examination of only the average correlation shows that the KOG best
scoring pair (KOGB) human-mouse set, containing the best scoring human-mouse pair of each KOG, seems to
have the highest conservation of function. However, this set has the lowest average proteome size for
humanmouse, thus combining a high selectivity with a low sensitivity. If orthology relationships between a
larger number of proteins are required, the MCL and MCL best scoring pair (MCLB) sets are good alternatives.
Finally, the large standard deviations are a reason to be careful with the interpretation of these results. We do not
have this statistical issue when examining the conservation of InterPro accession numbers (figure 2). The
ortholog identification methods that create the most orthologous relationships have a larger fraction of equal
InterPro accession numbers than the others. The many-to-many non-group methods PhyloGenetic Tree (PGT)
and Z 1 Hundred (Z1H) show particularly good scores. Note that these methods use a Smith-Waterman

calculation in combination with a Z-value threshold (Monte-Carlo statistics) to define the orthologous
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relationships (Z > 20 with some additional steps for PGT, Z > 100 for Z1H), whereas the methods with the
lower scores, INP, KOG and MCL, use BLAST in combination with E-value statistics.
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Figure 1. Correlation in expression profiles
Correlation in expression patterns between the (a) human-mouse (Hs-Mm) and (b) human-worm (Hs-Ce) orthologous pairs from the
benchmarked methods versus the average proteome size. Vertical error bars show the standard deviation from the average correlation
coefficient. The trendline shown is a linear regression trendline. The methods having a fourth letter 'B' behind the method name, shown as
squares in the graph, are group orthology methods in which only the best scoring pairs are taken into account. Ce, Caenorhabditis elegans;

Hs, Homo sapiens; Mm, Mus musculus. Color version on page 147.
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Conservation of InterPro accession number between the (a) human-mouse (Hs-Mm) and (b) human-worm (Hs-Ce) orthologous pairs from

the benchmarked methods versus the average proteome size. Ce, Caenorhabditis elegans; Hs, Homo sapiens; Mm, Mus musculus. Color

version on page 148.
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2.3.2 Pairwise conservation of functional parameters

We examined three other methods for orthology prediction benchmarking. In these benchmarks, rather than
comparing one-to-one functional correspondence between human and mouse/worm proteins, we compared the
correspondence of the relationship between two proteins in human with the relationship between their two
orthologs in mouse/worm. In this article, we refer to these methods as 'pairwise conservation of functional
parameters' (figures 3, 4 and 5). This functional conservation between two human proteins and two mouse/worm
proteins is measured by comparing the co-expression levels (figure 3), the neighboring relationships (figure 4)
and the protein-protein interactions (figure 5) between these two species. As described in some recent papers
[9,15], the evolutionary conservation of co-expression can be used for function prediction. Here it is used to test
which of the ortholog sets can be used to best improve the function prediction, using the Gene Ontology (GO)
database [16]. According to our first pairwise benchmark (figure 3), the PGT approach is the best method in the
human-mouse analysis, having the highest fraction of equal 4th level GO biological process and the third/fourth
largest average proteome. Z1H is the second best method when using conservation of co-expression as a
benchmark, having both the second highest sensitivity and the second highest selectivity. The second
benchmark, the conservation of gene order, gives completely different results (figure 4): the BBH, INP and
MCL methods have the best scores. The three methods with a relatively large average proteome size (PGT, Z1H
and KOG) have exceptionally low scores here: all have a fraction of conserved gene order below 0.02. For the
conservation of protein-protein interaction (figure 5), the smallest set of all, BBH, has the best score. However,
the INP and MCL sets have the best score when both the fraction of conserved protein-protein interaction and
the average proteome size are taken into account. Although not as dramatically low as the fractions of conserved
gene order, the fractions of conserved protein-protein interaction are still quite low for the three methods with

the largest average proteome size.
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Conservation of co-expression from human-human gene pairs to orthologous (a) mouse-mouse and (b) worm-worm gene pairs from the

benchmarked methods versus the average proteome size. Ce, Caenorhabditis elegans; Hs, Homo sapiens; Mm, Mus musculus. Color version

on page 149.
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Conservation of gene order from human-human gene pairs to orthologous (a) mouse-mouse and (b) worm-worm gene pairs from the
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Figure 5. Conservation of protein-protein interaction

Conservation of protein-protein interaction from human-human protein pairs to orthologous (a) mouse-mouse and (b) worm-worm protein

pairs from the benchmarked methods versus the average proteome size. Ce, Caenorhabditis elegans; Hs, Homo sapiens; Mm, Mus

musculus. Color version on page 151.
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2.3.3 Overall results

From the independent results it is difficult to draw a conclusion on which method is best. We therefore
determined an overall benchmark of the ortholog identification methods, which are calculated by multiplying
the function similarity scores by the average proteome size (table 1). Subsequently, the five resulting scores are
combined into one overall score by multiplying them. Each benchmark has its own ranking, on a scale from 1 to
6, and an overall ranking according to the overall score. The overall scores and the overall ranking show that
BBH and INP score best, closely followed by MCL. If we combine the several benchmarks into an overall score
in a different way, by normalizing all benchmarking scores first (putting the lowest score at 0 and the highest
score at 100) and then adding them up, the results are approximately the same (figure 6a for human-mouse).
Again, the BBH and INP methods have the best score, followed by the PGT and MCL methods. KOG has a very
low overall score. PGT has both a higher score and a larger average proteome size than MCL. The human-worm
analysis (figure 6b) shows that the sensitivity/selectivity trade-off is less visible here. The INP method, which
has the fourth largest selectivity, has the highest overall score. Z1H, the method with the largest selectivity, has
only the second highest score. These results might be influenced, however, by the lower reliability of the
human-worm expression data. When combining the results from figure 6a and 6b, we can conclude that the

InParanoid algorithm is the best ortholog identification method.

Table 1. Benchmarking scores of ortholog identification methods

Direct conservation of function Pairwise conservation of function
Method . Equal Int‘erPro Conservation of | Conservation of Conse‘rvatlon 0 T Overall score
Co-expression accession . protein-protein
number co-expression gene order interaction
Hs-Mm
BBH 1.28E+03 (3) 9.49E+03 (6) 2.59E+03 (4) 5.42E+03 (1) 3.18E+02 (1) 5.42E+16 (2)
INP 1.49E+03 (2) 1.13E+04 (5) 2.48E+03 (5) 4.26E+03 (3) 3.13E+02 (2) 5.57E+16 (1)
KOG 4.73E+02 (6) 1.60E+04 (2) 3.08E+03 (3) 1.42E+01 (6) 1.09E+00 (6) 3.61E+11 (6)
MCL 1.66E+03 (1) 1.20E+04 (4) 2.41E+03 (6) 4.56E+03 (2) 2.34E+02 (3) 5.10E+16 (3)
PGT 1.05E+03 (4) 1.53E+04 (3) 4.63E+03 (1) 1.73E+02 (4) 1.21E+02 (4) 1.56E+15 (4)
Z1H 9.29E+02 (5) 1.72E+04 (1) 3.93E+03 (2) 3.75E+01 (5) 3.17E+01 (5) 7.46E+13 (5)
Hs-Ce
BBH 2.25E+03 (5) 3.62E+03 (6) 1.16E+02 (6) 0.00E+00 (6) 5.29E+01 (1) 5.00E+10 (6)
INP 3.02E+03 (3) 5.67E+03 (3) 2.17E+02 (4) 2.79E+02 (1) 7.62E+00 (4) 7.90E+12 (1)
KOG 4.20E+03 (1) 9.51E+03 (1) 6.14E+02 (1) 2.64E+01 (5) 1.17E+00 (6) 7.58E+11 (5)
MCL 2.50E+03 (4) 5.01E+03 (4) 1.76E+02 (5) 2.95E+01 (4) 2.94E+01 (2) 1.91E+12 (2)
PGT 3.89E+03 (2) 9.26E+03 (2) 3.84E+02 (2) 5.36E+01 (2) 1.65E+00 (5) 1.22E+12 (4)
Z1H 2.00E+03 (6) 4.74E+03 (5) 2.97E+02 (3) 4.20E+01 (3) 1.07E+01 (3) 1.27E+12 (3)

Ce, Caenorhabditis elegans; Hs, Homo sapiens; Mm, Mus musculus.
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2.3.4 Ortholog reference set

We included in our study a 'true ortholog' reference set, consisting of five well-studied protein families: the Hox
cluster proteins and hemoglobins (human-mouse), the nuclear receptors and toll-like receptors (human-worm),
and the Sm and Sm-like proteins (human-mouse plus human-worm). Table 2 shows the overlap between the

orthologs defined by the six different methods and this reference set.

Table 2. Overlap with ortholog reference set

Orthologous pairs
Method Orthologous pairs divided by average False positives
proteome size

BBH 26 2.03E-03 3

Hox cluster proteins (Hs, INP 28 1.87E-03 3
31 unique proteins; Mm, KOG 30 1.65E-03 456
35 unique proteins; Hs- MCL 26 1.65E-03 25
Mm, 41 protein pairs) PGT 33 2.00E-03 350
Z1H 26 1.47E-03 19

BBH 8 1.40E-03 2
Nuclear receptors (Hs, INP 13 1.77E-03 179

22 unique proteins; Ce, KOG 20 1.82E-03 2,062

18 unique proteins; Hs- MCL 13 2.04E-03 4
Ce, 29 protein pairs) PGT 11 1.08E-03 180

Z1H 8 1.56E-03 8

BBH 2 1.56E-04 2

Hemoglobins (Hs, 4 INP 6 4.02E-04 8
unique proteins; Mm, 9 KOG 4 2.20E-04 52

unique proteins; Hs-Mm, MCL 4 2.54E-04 3
9 protein pairs) PGT 4 2.42E-04 23
Z1H 8 4.53E-04 37

BBH 0 0 0

Toll-like receptors (Hs, INP 0 0 0

10 unique proteins; Ce, 1 KOG 10 9.12E-04 1

unique protein; Hs-Ce, MCL 0 0 0
10 protein pairs) PGT 5 4.89E-04 86

Z1H 0 0 0

BBH 5 3.90E-04 8

Sm proteins (Hs, 13 INP 5 3.35E-04 8
unique proteins; Mm, 17 KOG 6 3.29E-04 15
unique proteins; Hs-Mm, MCL 4 2.54E-04 10
17 protein pairs) PGT 7 4.23E-04 18

Z1H 5 2.83E-04 4

BBH 6 1.05E-03 0

Sm proteins (Hs, 6 INP 6 8.19E-04 0

unique proteins; Ce, 6 KOG 4 3.65E-04 1

unique proteins; Hs-Ce, MCL 6 9.42E-04 2

6 protein pairs) PGT 3 2.93E-04 9

Z1H 0 0 0

Ce, Caenorhabditis elegans; Hs, Homo sapiens; Mm, Mus musculus.

The human-mouse Hox cluster proteins are covered best by the PGT method: 33 out of 41 orthologous pairs are
detected. The KOG method is the second best with 30 orthologous pairs, and InParanoid is third best with 28
pairs. The other three methods all find the same 26 pairs. However, the KOG and PGT methods also have a high
number of false positives. When the number of orthologous pairs is divided by the average proteome size, the
BBH method has the highest score, followed by PGT and INP. The nine human-mouse hemoglobin orthologous
pairs are almost all detected by the Z1H method. The orthologous pairs/average proteome size ratios of the six

different methods do not differ much for this family, which means that the number of detected pairs is
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proportional to the inclusiveness of the ortholog identification method. PGT and BBH have the best scores when

looking at Sm and Sm-like proteins.

As for the human-worm nuclear receptors, the KOG method has the highest number of orthologous pairs.
However, KOG has an extremely high number of false positives. When the numbers of orthologous pairs are
divided by the average proteome size, the MCL method has the best performance. The Toll-like receptor family,
which has only one member in Caenorhabditis elegans shows good results for KOG as well, together with the
PGT method. For the Sm and Sm-like protein family, the MCL and INP methods have the highest orthologous

pairs/average proteome size ratios.

2.4 Discussion

We have tested the quality of a number of ortholog identification methods for protein function prediction by
comparing functional genomics data from each of the proteins in a pair identified as orthologs. Orthologs
should, in general, have a higher level of function conservation than paralogs. The results show that, in general,
the less inclusive the method, the better it performs in terms of function similarity; in other words, there is a
certain trade-off between sensitivity and selectivity. We correct for this by taking the function similarity score
and multiplying it by the geometric average of the number of unique human proteins and the number of unique
mouse/worm proteins within the ortholog set that is being studied (the 'average proteome size'). After
multiplying these scores to obtain an overall score (giving each benchmark the same weight), we generate an
overall ranking that gives equal weight to both the five different benchmarks and the sensitivity and selectivity.
From the results, we conclude that the InParanoid method is the best ortholog identification method. However,
some caution should be taken with the overall ranking system. First, the average proteome size now has the
same weight as the function similarity score, while one of them might be considered more important than the
other. We examined the effect of different weights for these two parameters (1:2 and 2:1 proportions) but did
not find any large differences in the results. Second, some benchmarks may produce better results than others,
which might be a reason to give different weights to the several benchmarks when combining them into an
overall score. For example, the benchmark that uses GO annotations could be less reliable because some of
these annotations are actually based on sequence similarity themselves. Third, recent research [17] suggests that
the expression levels of physically interacting proteins coevolve. This indicates a strong connection between the
third and the fifth benchmark in this study, which could be a reason to leave out one of them. However,
coexpression can be the result of processes other than physical interaction only. The differences in the results we
got from the two benchmarks also contributed to our decision not to exclude either one of them. Finally, it
should be noted that the data we used in our human-mouse analysis was, in general, of higher quality than the
data we used in our human-worm analysis. This applies especially to the gene expression data: for the human-
mouse set we could use the SNOMED tissue classification, whereas for the human-worm set we found it quite
hard to map the tissue samples to each other. The small numbers that were generated in the human-worm

analysis also makes this analysis statistically less reliable than the human-mouse analysis.
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The conclusion that can be drawn from this study is that the method that should be used to identify orthologs is
in fact dependent on the research question one wants to answer using the orthologous relationships. For
example, if the goal is to have one or more orthologs for a large number of proteins, one of the methods that
allow many-to-many relationships (like InParanoid) should be applied. If selectivity (having as few as possible
false positives) is more important than sensitivity (having as many as possible true positives) and having only
one ortholog per protein is sufficient, the best bidirectional hit approach should give the best results. Although
methods that include phylogenetic inferences to determine phylogenies should, in principle, be the best at
establishing orthologous relationships, in practice they suffer from a number of drawbacks that methods solely
based on pairwise identities do not have. It is commonplace, for example, to require positions in a sequence
alignment to be present in all or most of the sequences in order to use them for deriving a phylogeny with
ClustalW. Such requirements drastically reduce the amount of information that can be used to determine
orthology relationships. In the absence of easily implementable solutions to this, computational shortcuts like

InParanoid give, in our analysis, better results.

Finally, results could differ when different statistical significance scores (unpublished data), scoring matrices,
gap penalties, and so on are used for the various alignment algorithms. We tried to minimize the effect of these
parameters as much as possible by using the defaults of the several programs, but some programs might still be
more suitable for identifying close orthologous relationships than others, while these others might be more
appropriate for the identification of distant relationships. The differences observed between our human-mouse
(closely related species) and human-worm (distantly related species) analyses support this statement. As for the
human-worm analysis, the conservation of functional characteristics and gene order is significantly lower than
in human-mouse. The latter is not surprising because millions of years of chromosomal rearrangements during
evolution have changed the chromosomal organization significantly. As for the functional aspects, we can
conclude that they have been poorly conserved whereas the protein domain organization has been well

conserved.

2.5 Conclusion

Because of the high degree of functional similarity between orthologous proteins, the quality of orthology
prediction is an important factor in the transfer of functional annotation. To measure the functional similarity of
proteins from different species we use functional genomics data, such as protein interaction data and expression
data. In general, we observe a sensitivity/selectivity trade-off: the functional similarity scores per orthologous
pair become higher when the number of proteins included in the ortholog groups decreases. This trend is more
visible in the human-mouse comparison than it is in the human-worm comparison. Presumably, it gets less
visible when the phylogenetic distance gets larger. By combining the sensitivity and the selectivity into an
overall score, we show that the InParanoid program is the best ortholog identification method in terms of
identifying functionally equivalent proteins. The method that should be used to answer a specific research
question is, however, also dependent on, for example, the evolutionary distance between the studied species and

the desirability of many-to-many orthologous relationships.
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2.6 Materials and methods

2.6.1 'Protein World' data set

For an unbiased comparison of all of the covered methods, the same data set was used at all times. This 'Protein
World' (unpublished data) data set [18] was created by comparing all of the currently known and predicted
proteins (SpTrEMBL [19], RefSeq [20], Ensembl [21]) through the Smith-Waterman algorithm [22], using Z-
values to obtain a database-size independent estimate of significance [23]. The Smith-Waterman algorithm has
been shown to be more sensitive [24] than its faster (non-dynamic programming) approximations, the BLAST
[25] and FASTA [26] algorithms. The data set is freely available through the Center for Molecular and
Biomolecular Informatics website [27]. As good expression data and other functional data were available for

human, mouse and worm, we used the orthologous relationships between these three species for our study.

2.6.2 Ortholog identification methods

The six ortholog identification methods covered in this study are listed below. Included are the best bidirectional
hit method and five many-to-many methods. The many-to-many methods are divided into group orthology
methods and non-group orthology methods. The group orthology methods, KOG [9], INP [6] and MCL [7],
define several, distinct groups of orthologous genes and proteins. The two many-to-many non-group methods,
PGT [10] and Z1H, do not define orthologous groups, but can still determine many-to-many orthologous
relationships. Table 3 shows the numbers of orthologous groups, unique proteins and protein pairs within the
several ortholog sets. The average proteome size is the geometric average of the total number of unique human

proteins and the total number of unique mouse/worm proteins within the determined orthologous relationships.

Table 3. General statistics of ortholog identification methods

Ortholo
identiﬁcatigon Orthologous Protein pairs Human proteins Mouse/‘ivorm Average.proteome
method groups proteins size
Hs-Mm
BBH - 12,817 12,817 12,817 12,817
INP 12,610 19,482 15,344 14,545 14,939
KOG 7,874 810,697 20,478 15,640 18,220
MCL 7,002 12,625 16,676* 14,833* 15,727*
PGT - 85,848 17,302 15,729 16,534
Z1H - 290,176 19,055 16,149 17,662
Hs-Ce
BBH - 5,714 5,714 5,714 5,714
INP 4,135 17,011 9,282 5,784 7,327
KOG 4,155 155,387 12,249 9,812 10,963
MCL 4,705 9,749 7,028 5,774 6,370
PGT - 49,979 12,499 8,370 10,228
Z1H - 21,509 6,338 4,163 5,137

*Corrected for Ensembl-SpTrEMBL mapping.

2.6.2.1 Best bidirectional hit

Ce, Caenorhabditis elegans; Hs, Homo sapiens; Mm, Mus musculus.
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The 'best bidirectional hit' (BBH) method is the most frequently applied method to determine orthologous pairs.
It assumes that a cross-species protein pair in which each protein gives back the other protein as being the best
hit in the whole other proteome is an orthologous pair. In this research, the best bidirectional hits were
determined based on Z-values of the Protein World human-mouse and human-worm set, without a sequence
similarity cutoff. In total, 12,817 human-mouse and 5,714 human-worm orthologous pairs were identified.
Although the BBH method theoretically can give some many-to-many orthologs, it practically gives only one-

to-one orthologous pairs.

2.6.2.2 InParanoid

In the INP method [6], all possible pairwise similarity scores between datasets A-A, B-B, A-B and B-A that
score higher than a cutoff (bitscore >50, overlap >50%) are detected. Then the best bidirectional hits are
determined and marked as potential orthologs. The in-species pairs that score higher than these orthologous
pairs are marked as additional orthologs. These 'in-paralogs' get confidence values that indicate how similar they
are to the main ortholog: 100% is assigned to the main ortholog and 0% is assigned to a sequence with the
minimum similarity score required to be marked as in-paralog of a given group. Finally, overlapping groups of
orthologs are resolved and bootstrap-based confidence values are added for all groups of orthologs.
Additionally, an outgroup proteome can be used to test the significance of the in-paralog scores. InParanoid
version 1.35 was downloaded [28] and the program was run using the standard parameters, except for the use of
the BLOSUMS0 matrix instead of the standard BLOSUMG62 matrix. The BLOSUMS80 matrix is more
appropriate when studying protein pairs with relatively small evolutionary distances. The optional third
outgroup proteome was left out. We used Paracel BLAST 1.4.9. Through the INP algorithm, 19,482 orthologous
pairs were identified between human and mouse, comprising 12,610 orthologous groups; 17,011 orthologous

pairs were identified between human and worm, comprising 4,135 orthologous groups.

2.6.2.3 euKaryotic Orthologous Groups

The KOG database [9] is the eukaryote specific version of the COG database [5]. The latter database is
considered by many to be the standard orthology database of this moment. Both the COG and the KOG
procedure start with an all-against-all comparison using BLAST, followed by the detection of triangles of
mutually consistent, genome-specific best hits (BeTs). Subsequently triangles with a common side are merged
to form crude, preliminary KOGs, after which a case-by-case analysis of each candidate KOG is carried out,
among others to split fused proteins. The difference between COG and KOG lies within the last step, the manual
curation. The KOG procedure pays extra attention to multi-domain proteins, which are quite common in
eukaryotes. The KOG database currently consists of seven eukaryotic proteomes. A BLAST all-against-all was
used to determine the corresponding KOG for each human, mouse and worm protein within the SpTrTEMBL set.
Orthologous relationships were determined between all human, mouse and worm proteins within a KOG.
Because of the large groups that can be formed by KOGs, no less than 810,697 human-mouse orthologous
protein pairs were determined, divided over 7,874 orthologous groups; 155,387 orthologous pairs were

identified between human and worm, comprising 4,155 orthologous groups.
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2.6.2.4 OrthoMCL

The MCL algorithm [7] starts with an all-against-all BLASTP, after which the reciprocal best similarity pairs
between species are marked as putative orthologs and the reciprocal better similarity pairs as recent paralogs. A
similarity matrix is calculated, followed by a Markov clustering [29], which determines the orthologous groups.
A list of all human and mouse Ensembl protein identifiers linked to an OrthoMCL group ID was obtained from
the authors. These Ensembl protein IDs were mapped to the SpTrEMBL proteome using EnsMart [30] version
19.3 [31]. Orthologous relationships were determined between all human and mouse proteins within all 7,002
groups, which gives a total of 12,625 orthologous protein pairs. The loss of defined orthologs was corrected for
by calculating how many ensembl IDs mapped to an SpTrTEMBL ID (57.3397%). The average proteome size of
9,018 (for human-mouse) was divided by 0.573397, giving a corrected number of proteins of 15,727. The
human-worm IDs were obtained through the new OrthoMCL-DB [32]; 9,749 human-worm orthologous protein
pairs were identified, comprising procedure 4,705 orthologous groups. Because of the different mapping

method, we did not need to correct the human-worm average proteome size.

2.6.2.5 Z 1 Hundred

Within the Z1H method, all cross-species protein pairs that have a Z-score of 100 or higher are considered to be
orthologs. The Z-value estimates the statistical significance of a Smith-Waterman dynamic alignment score
(SW-score) through the use of a Monte-Carlo process [23]. In this approach, selected pairs of sequences are
shuffled randomly 200 times and realigned. The significance of the SW-score of a selected pair is then
determined by comparing the SW-score of the selected pair with the scores for the shuffled pairs. By comparing
the score with that of the shuffled sequences the method implicitly takes into account effects of sequence
composition and sequence length. The Z1H set contains pairs of sequences whose SW-score is a hundred
standard deviations higher than the average SW-score for the shuffled sequences. Using the Z1H method,
290,176 human-mouse and 21,509 human-worm orthologous protein pairs were identified. The algorithm does

not identify distinct groups of proteins, and is, therefore, a non-group method.

2.6.2.6 PhyloGenetic Tree

The PGT method uses the output generated by multiple alignments and subsequent tree calculation [10] to
define orthologous relationships. Although calculations like these are rather time consuming, they should give a
better insight into the evolution of the studied proteins and in principle come closest to the original evolutionary
definition of orthology. Orthologies were determined by grouping all proteins over the 9 eukaryotic species
covered in Protein World that have a Z-value above 20 compared to one of the human proteins, and have a
region of homology larger than 50% of the query length. The resulting 23,829 groups were aligned using
ClustalW version 1.82 [33], and phylogenies were created using neighbor-joining [34]. For the calculation of the
phylogenetic trees we only used the positions that were present in all aligned sequences, and levels of protein

sequence identity were translated to evolutionary distances using the Kimura correction as implemented in
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ClustalW. The other parameters were set to default. After the calculations, an ortholog identification algorithm
selects partitions in the tree that only include orthologs and in-paralogs to define the orthologous relationships
per species pair [10]. For human and mouse, 85,848 relationships were identified. For human and worm, 49,979
relationships were identified. Because a phylogenetic tree is calculated for the homologs of every sequence, and

the trees are not merged, this method is like the Z1H method, not a pure group method.

2.6.3 Benchmarks

Below are a description and the workflow of the used benchmarks. The first two benchmarks measure 'direct
conservation of functional parameters', that is, they examine only one protein in human and one protein in
mouse/worm. The last three methods compare the relationship between two proteins in human with the

relationship of their two orthologs in mouse/worm ('pairwise conservation of functional parameters').

The results of the group orthology methods were analyzed in two ways: we determined the average score for all
pairwise orthology relationships within an orthologous group; and we only considered the best scoring pair
within an orthologous group. The latter option obviously leads to a much higher score for the many-to-many
orthology relationships. However, by including only one pair of orthologous sequences per orthologous group,
that high score is balanced by a reduction in the total number of orthologous relationships (one per orthologous
group). Both the number of orthologous relationships and the quality of these relationships are taken into

account in the final assessment of the ortholog identification algorithms.

2.6.3.1 Direct conservation of functional parameters

To test the conservation of function, the Pearson correlation between the expression profiles of the proteins in an
orthologous pair was calculated. The expression dataset used here [35] was a subset of pathologically normal
human and mouse tissue samples from the Gene Logic BioExpress Database product [36]. Because of the small
overlap of tissue categories (115 in human, 25 in mouse), the SNOMED [37] tissue categories were used to
calculate the correlation coefficient (15 in human, 12 in mouse, 12 overlapping categories). The human dataset
consists of 3,269 tissue samples and 44,792 cDNA fragments, the mouse dataset of 859 tissue samples and
36,701 cDNA fragments. A perfect correlation has a score of 1, a perfect anti-correlation has a score of -1. We
used expression data from Stuart and colleagues [38] for the human-worm analysis, comparing tissues from both
species that had similar expression profiles. For computing time-saving reasons, we used a sample of the dataset
to calculate which tissues were similar: the first 10 human tissues were compared with all of the 978 worm
tissues, using the first 10 metagenes defined by Stuart et al. The 'best hit' of the worm tissue samples for each
human tissue sample was seen as corresponding tissue. These ten corresponding tissues were then used to
calculate the Pearson correlation coefficients between the human and worm proteins, from which only the
positive correlations were used. Proteome sizes were corrected for this by multiplying them by two, before
calculating the average proteome size. For visualization reasons we displayed error bars of only one-eighth of

the SD. Because of the differences between the human-mouse and human-worm expression data analyses, we
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emphasize that the two figures (figures la and 1b) should not be compared to each other. The figures can,

however, be used to compare the several ortholog identification methods within these species pairs.

The conservation of molecular function can also be benchmarked by examining whether the orthologs are in the
same InterPro [39] family. Each InterPro accession number represents a protein family or domain, containing a
cross-species set of homologous proteins with its own functional annotation. Proteins within an InterPro protein
family have similar domain compositions. Again, the higher the percentage with equal InterPro accession
numbers, the better the conservation of function. As InterPro annotation is based on similarity to predefined
domains, it is not independent of sequence and cannot be used as a completely independent benchmark. It does,
however, allow one to judge to what extent proteins that are regarded as orthologous actually do have the same
domain composition. This is important because most automatic methods for orthology prediction, like

OrthoMCL, do not require proteins to be full length homologs.

2.6.3.2 Pairwise conservation of functional parameters

To measure the conservation of co-expression, first the correlation between the expression profiles of each
human-human gene pair was calculated. The expression dataset used was a subset of pathologically normal
human and mouse tissue samples from the Gene Logic BioExpress Database product, as mentioned above. This
time we used all of the 115 categories to calculate the Pearson correlation coefficient for the human-human
pairs, and we calculated the Pearson correlation coefficients for the mouse-mouse gene pairs using the 25 tissue
categories in mouse. Co-expression is considered conserved when the studied human gene pair having a Pearson
correlation coefficient above a certain threshold has an orthologous gene pair in mouse that has a Pearson
correlation coefficient above the same threshold. This threshold was varied between 0.0 and 1.0 with an interval
of 0.1. Co-expression can be used to predict protein function, specifically when it is conserved in evolution
[10,15]. To test which of the ortholog sets can best be used to improve co-expression based function prediction,
we also determined which protein pairs were active in the same process, using the GO database [16]. Two
proteins were said to be active in the same process if they shared a 4th level element of the GO biological
process tree, in which the root is the Oth level element and every subsequent branch is one level higher. Finally,
the fraction of the total protein set sharing this 4th level element was calculated for the several thresholds, as a
measure for the sensitivity and selectivity of the ortholog identification method for function prediction by
conservation of co-expression. In this analysis, GO labels such as 'undefined' were discarded. The human-worm
analysis was performed in a similar way, but with the use of expression data from Stuart and colleagues [38].
For calculating reliable correlation coefficients, we only used genes here that had expression data for at least
900 out of the 1,202 human tissue samples. In worm, we used all genes having expression data for at least 500

out of the 979 tissue samples.

The conservation of gene order is the second measure of pairwise conservation. Here we examined if two genes
were adjacent to each other on the genome using EnsMart [30] version 19.3 [31] for the human-mouse analysis
and EnsMart version 34 for the human-worm analysis. For each of the pairs where this was the case, we

examined if the orthologs in mouse/worm were also adjacent on the genome. If so, the gene order was
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considered to be conserved for this gene pair. Because no varying threshold is needed (two genes are adjacent or
not), this is more straight-forward than measuring the conservation of co-expression. The fraction of
neighboring human genes of which the orthologs in mouse/worm are also neighbors is used as a measure for the

accuracy of orthology prediction.

A third measure of pairwise conservation is the conservation of protein-protein interaction. The Database of
Interacting Proteins (DIP) database [40] was used to determine the protein-protein interactions in human and
mouse/worm. A protein-protein interaction is considered conserved when two interacting proteins in human
have orthologs in mouse/worm that are interacting too. Again, the fraction of interacting human proteins of
which the orthologs in mouse/worm are interacting too is considered to be a measure for the conservation of

function.

2.6.4 Ortholog reference set

We defined a list of 'true ortholog pairs', for both human-mouse and human-worm, as a reference set. We chose
the Hox cluster proteins and hemoglobins as a human-mouse reference set because of its well-studied evolution
in vertebrates. We determined the homeobox orthologs using figure 1 from [41]. This resulted in 41 orthologous
protein pairs, consisting of 31 human proteins and 35 mouse proteins. The hemoglobin orthologs were identified
with the use of Lecomte et al. [42], resulting in nine pairs of four human and nine mouse proteins. For human-
worm, we used the analysis on nuclear receptors performed by Gissendanner et al. [43], resulting in 29
orthologous pairs of 22 human proteins and 18 worm proteins. A second human-worm orthology analysis was
performed on the family of toll-like receptors [44], which has only one member in worm but 10 members in
human. The fifth and final protein family, the Sm and Sm-like proteins [45], was analyzed for both human-
mouse and human-worm orthologs. For this family we found 13 human proteins and 17 mouse proteins in 17

orthologous pairs, together with 6 human proteins and 6 worm proteins in 6 pairs.

For each of these parts of our reference set and for each of the six ortholog identification methods, we
determined how many of these orthologous pairs were covered, together with the number of false positives
(pairs having only the human protein or the mouse/worm protein from a reference pair). Finally, to have a fair
comparison between the several ortholog identification methods, we calculated the number of orthologous pairs

divided by the average proteome size.

2.7 Additional data files

The following additional data are available with the online version of this paper
(http://www.genomebiology.com/2006/7/4/R31). Additional data file 1 contains all end data used to create the
figures. Additional data file 2 contains all of the protein pairs that are considered to be 'true orthologs' within our
ortholog reference set, consisting of several protein families. The first column contains the name of the protein

family, the second the human gene names and the third the mouse/worm gene names. The fourth column
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contains the corresponding human "Protein World' entries, whereas the fifth column contains the mouse/worm

entries. The last columns contain the orthologous protein pairs.
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3.1 Abstract

3.1.1 Background

In the past years the Smith-Waterman sequence comparison algorithm has gained popularity due to improved
implementations and rapidly increasing computing power. However, the quality and sensitivity of a database
search is not only determined by the algorithm but also by the statistical significance testing for an alignment.
The e-value is the most commonly used statistical validation method for sequence database searching. The
CluSTr database and the Protein World database have been created using an alternative statistical significance
test: a Z-score based on Monte-Carlo statistics. Several papers have described the superiority of the Z-score as
compared to the e-value, using simulated data. We were interested if this could be validated when applied to

existing, evolutionary related protein sequences.

3.1.2 Results

All experiments are performed on the ASTRAL SCOP database. The Smith-Waterman sequence comparison
algorithm with both e-value and Z-score statistics is evaluated, using ROC, CVE and AP measures. The BLAST
and FASTA algorithms are used as reference. We find that two out of three Smith-Waterman implementations
with e-value are better at predicting structural similarities between proteins than the Smith-Waterman

implementation with Z-score. SSEARCH especially has very high scores.

3.1.3 Conclusions

The compute intensive Z-score does not have a clear advantage over the e-value. The Smith-Waterman
implementations give generally better results than their heuristic counterparts. We recommend using the

SSEARCH algorithm combined with e-values for pairwise sequence comparisons.

3.2 Background

Sequence comparison is still one of the most important methodologies in the field of computational biology. It
enables researchers to compare the sequences of genes or proteins with unknown functions to sequences of well-
studied genes or proteins. However, due to a significant increase in whole genome sequencing projects, the
amount of sequence data is nowadays very large and rapidly increasing. Therefore, pairwise comparison
algorithms should not only be accurate and reliable but also fast. The Smith-Waterman algorithm [1] is one of
the most advanced and sensitive pairwise sequence comparison algorithms currently available. However, it is
theoretically about 50 times slower than other popular algorithms [2], such as FASTA [3] and BLAST [4]. All
three algorithms generate local alignments, but the Smith-Waterman algorithm puts no constraints on the
alignment it reports other than that it has a positive score in terms of the similarity table used to score the

alignment. BLAST and FASTA put additional constraints on the alignments that they report in order to speed up
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their operation: only sequences above a certain similarity threshold are reported, the rest is used for the
estimation of certain parameters used in the alignment calculation. Because of this Smith-Waterman is more
sensitive than BLAST and FASTA. The Smith-Waterman algorithm finds the best matching regions in the same
pair of sequences. However, BLAST and FASTA are still far more popular because of their speed and the
addition of a statistical significance value, the Expect-value (or simply e-value), whereas the original Smith-
Waterman implementation relies only on the SW-score without any further statistics. The newer Smith-
Waterman implementations of Paracel [5], SSEARCH [6] and ParAlign [7] do include the e-value as a measure
of statistical significance, which makes the Smith-Waterman algorithm more usable as the engine behind a
similarity search tool. The e-value is far more useful than the SW-score, because it describes the number of hits
one can expect to see by chance when searching a database of a certain size. An e-value threshold can be used
ecasily to separate the ‘interesting’ results from the background noise. However, a more reliable statistical
estimate is still needed [8]. The Z-score, based on Monte-Carlo statistics, was introduced by Doolittle [9] and
implemented by Gene-IT [10] in its sequence comparison suite Biofacet [11]. The Z-score has been used in the
creation of the sequence annotation databases CluSTr [12] and Protein World [13] and was used in orthology
studies [14]. The Z-score has also been implemented in algorithms other than Smith-Waterman, such as FASTA
[15]. Tt is calculated by performing a number (e.g., 100) of shuffling randomizations of both sequences that are
compared, completed by an estimation of the SW score significance as compared to the original pairwise
alignment. This makes the Z-score very useful for doing all-against-all pairwise sequence comparisons: Z-scores
of different sequence pairs can be compared to each other, because they are only dependent on the sequences
itself and not on the database size, which is one of the parameters used to calculate the e-value. However, this
independency of the database size makes the Z-score unsuitable for determining the probability that an
alignment has been obtained by chance. The randomizations make the Z-score calculation quite slow, but
theoretically it is more sensitive and more selective than e-value statistics [16, 17]. Unfortunately, this has never

been validated experimentally.

Some methods have been used to combine the sensitivity and selectivity of a sequence comparison algorithm
into one single score [18]. Receiver operating characteristic (ROC) is a popular measure of search accuracy [19].
For a perfect search algorithm, all true positives for these queries should appear before any false positive in the
ranked output list, which gives an ROC score of 1. If the first n items in the list are all false positives, the ROCn
score is 0. Although researchers have devised many ways to merge ROC scores for a set of queries [20], one
simple and popular method is to ‘pool’ search results so as to get an overall ROC score [21]. Another method to
evaluate different methods is the errors per query (EPQ) criterion and the ‘coverage versus error’ plots [2]. EPQ
is a selectivity indicator based on all-against-all comparisons, and coverage is a sensitivity measure. The
assumption for EPQ is that the search algorithm can yield a ‘normalized similarity score’ rather than a length-
dependent one, so that results from queries are comparable. Like ROC, the coverage versus error plot can give
an overall performance comparison for search algorithms. A third method, the average precision (AP) criterion,
is adopted from information retrieval research [22]. The method defines two values: the recall (true positives
divided by the number of homologs) and the precision (true positives divided by the number of hits), which are

plotted in a graph. The AP then is an approximate integral to calculate the area under this recall-precision curve.
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These methods were used to compare several sequence comparison algorithms, but we use them to compare the

e-value and Z-score statistics. Analyses of BLAST and FASTA are also included as reference material.

Here we show that two out of the three Smith-Waterman implementations with e-value statistics are more
accurate than the Smith-Waterman implementation of Biofacet with Z-score statistics. Furthermore, the
comparison of BLAST and FASTA with the four Smith-Waterman implementations shows that FASTA is a
more reliable algorithm when using the ASTRAL SCOP structural classification as a benchmark. The Smith-
Waterman implementation of Paracel even has lower scores than both BLAST and FASTA. SSEARCH, the

Smith-Waterman implementation in the FASTA package, scores best.

3.3 Results

We used a non-redundant protein-domain sequence database derived from PDB as the target database. It is
automatically generated using the ASTRAL system [23]. According to the structural classification of proteins
(SCOP release 1.65), it includes 9498 sequences and 2326 families. True positives are those in the same family
as the query sequence. SCOP as an independent and accurate source for evaluating database search methods has
been used by other researchers [2, 24]. ASTRAL SCOP sets with different maximal percentage identity
thresholds (10%, 20%, 25%, 30%, 35%, 40%, 50%, 70%, 90% and 95%) were downloaded from the ASTRAL
SCOP website [25]. Their properties (number of families, number of members, etc.) are shown in table 1. Three
different statistical measures were applied: receiver operating characteristic (ROC), coverage versus error (CVE)
and mean average precision (AP). We compared six different pairwise sequence comparison algorithms, which

are listed in table 2, together with the parameters used in this study.

Table 1. Properties of ASTRAL SCOP PDB sets

Maximal Size of Number of families Number of families
Number of Number of Average . .
percentage o oo largest having only 1 having more than 1
. . sequences families family size .
indentity family member member
10% 3631 2250 1.614 25 1655 595
20% 3968 2297 1.727 29 1605 692
25% 4357 2313 1.884 32 1530 783
30% 4821 2320 2.078 39 1435 885
35% 5301 2322 2.283 46 1333 989
40% 5674 2322 2.444 47 1269 1053
50% 6442 2324 2.772 50 1178 1146
70% 7551 2325 3.248 127 1087 1238
90% 8759 2326 3.766 405 1023 1303
95% 9498 2326 4.083 479 977 1349

Table 2. Sequence comparison methods and parameters

Method Abbreviation Version Matrix Gap open Gap extension Numl{er (.)f
penalty penalty randomizations
Paracel SW pce - BLOSUM62 38 * 0.3%1S * 0
e-value
Biofacet SW bf z 2.9.6 BLOSUM62 12 1 100
Z-score
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NCBI BLAST ble 229 BLOSUMG62 12 1 0
e-value
FASTA fae 3424 | BLOSUM62 12 1 0
e-value
SSEARCH sse 341024 BLOSUM62 12 1 0
e-value
ParAlign SW pac 400 BLOSUM62 12 1 0
e-value

* IS = average matrix identity score

3.3.1 Receiver operating characteristic

The mean ROCS50 scores increase if more structurally identical proteins are included, for both the e-value and
the Z-score measurements (figure 1). The ROC50 scores of the PDB010 set show a large difference between the
several Smith-Waterman implementations: 0.19 for Paracel, 0.23 for Biofacet (with Z-score), 0.27 for ParAlign
and 0.31 for SSEARCH. The advantage of ParAlign over Biofacet decreases with increasing inclusiveness of
the ASTRAL SCOP set that is used. The ROC50 scores of the PDB095 set are 0.28 for Paracel, 0.35 for both
ParAlign and Biofacet (with Z-score) and 0.46 for SSEARCH. SSEARCH scores best of all studied methods,
regardless of which ASTRAL SCOP set is used. The reference methods FASTA and BLAST give quite

different results: FASTA is a good second and BLAST has scores similar to Paracel and Biofacet.
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Figure 1. The mean Receiver Operating Characteristic scores for ten different ASTRAL SCOP sets
The maximal structural identity percentage of each set increases from the left to the right, from 10% to 95%. Red bars: mean ROCs, scores
calculated using the Paracel Smith-Waterman algorithm. Blue bars: mean ROCs, scores calculated using the Biofacet Smith-Waterman
algorithm with Z-score statistics. Green bars: mean ROCs scores calculated using the BLAST algorithm. Yellow bars: mean ROCs, scores
calculated using the FASTA algorithm. Purple bars: mean ROCs, scores calculated using the SSEARCH algorithm. Orange bars: mean
ROC:s5 scores calculated using the ParAlign Smith-Waterman algorithm. Color version on page 153.
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3.3.2 Coverage versus error

This method differs from the ROC analysis on one crucial point: instead of looking at the first 100 hits, we
varied the threshold at which a hit was seen as a positive. Hence the results are somewhat dissimilar: the
differences between the several algorithms in the coverage versus error plots (figure 2) are not as obvious as
they are in the ROC50 graph (figure 1). Figure 2a shows the coverage versus error plot for the smallest
ASTRAL SCOP set (PDBO010), figure 2b shows the plot for the largest ASTRAL SCOP set (PDB095) and
figure 2c shows the plot for the intermediate set PDB035. An ideal algorithm would have a very high coverage
but not many errors per query, which places it in the lower right corner of the graph. SSEARCH has the best
scores when using the PDBO010 set, followed by ParAlign and FASTA, with the latter scoring best in the lowest-
coverage range (<0.02). Biofacet with Z-score has the lowest scores. The PDB095 plot shows some differences
between the low-coverage range (<0.25) and the high-coverage range (>0.50). In the low coverage range,
FASTA and Paracel have the highest scores, whereas SSEARCH and ParAlign have the highest scores in the
low-coverage range. It should be noted that the high-coverage range might statistically be more reliable because

of the larger number of hits. The PDB035 set gives similar results.
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Errors per query

Errars per query
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Figure 2. (a) Coverage versus error plot for the ASTRAL SCOP PDBO010 set. (b) Coverage versus error plot for the ASTRAL SCOP
PDBO035 set. (¢) Coverage versus error plot for the ASTRAL SCOP PDB09S set.

Red line: calculated using the Paracel Smith-Waterman algorithm. Blue line: calculated using the Biofacet Smith-Waterman algorithm with

Z-score statistics. Green line: calculated using the BLAST algorithm. Yellow line: calculated using the FASTA algorithm. Purple line:

calculated using the SSEARCH algorithm. Orange line: calculated using the ParAlign Smith-Waterman algorithm. Color version on page
154-155.
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3.3.3 Average precision

The average precision graph (figure 3) shows some minor differences from the ROC50 graph (figure 1): for the
PDB020, PDB025 and PDBO030 set, Paracel (e-value) scores better than Biofacet (Z-score). However, the
advantage of the Biofacet Smith-Waterman with Z-score increases from that point on (PDBO035, Paracel: 0.16,
Biofacet: 0.17) to the right side (PDB095, Paracel: 0.19, Biofacet: 0.24). The Z-score seems to score better when
more similar proteins are compared. Once more, SSEARCH has the highest scores for all structural identity

percentages, with FASTA as the second best.
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Figure 3. The average precision values for ten different ASTRAL SCOP sets

The maximal structural identity percentage of each set increases from the left to the right, from 10% to 95%. Red bars: mean AP values
calculated using the Paracel Smith-Waterman algorithm. Blue bars: mean AP values calculated using the Biofacet Smith-Waterman
algorithm with Z-score statistics. Green bars: mean AP values calculated using the BLAST algorithm. Yellow bars: mean AP values
calculated using the FASTA algorithm. Purple bars: mean AP values calculated using the SSEARCH algorithm. Orange bars: mean AP

values calculated using the ParAlign Smith-Waterman algorithm. Color version on page 156.

3.3.4 Case studies

We included two examples of our statistical analysis, which show how the ROC and mean AP measures differ
from each other and how results can be different for each studied protein. We choose two well-studied proteins:
enoyl-ACP reductase and the progesterone receptor, the first from a prokaryote (£. coli) and the second from a
eukaryote (H. sapiens). Both case studies were done using the PDB095 set, which is the most complete
ASTRAL SCOP PDB set used in our study.

3.3.4.1 Bacterial enoyl-ACP reductase
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Table 3 shows the results of our analysis of the ASTRAL SCOP entry of E. coli enoyl-ACP reductase chain A,
dlqgb6a , using the PDB095 set. One way of testing the reliability of a sequence comparison method is by
looking at the first false positive (FFP) in the list of top 100 hits (Table S.1 [see Additional file 1]). The c.2.1.2
structural family has 46 members within the PDB095 set, so the perfect sequence comparison algorithm would
return its first false positive at the 46th hit (the hit containing the query protein is discarded). For the Paracel
Smith-Waterman implementation, this is already the twenty-first hit. Four algorithms score best with the first
false positive at 24th place. A second testing method is counting the total number of true positives (NTP), of
which the perfect algorithm would return all 45. BLAST has the highest score here: 27 out of the top 100 hits
are true positives. FASTA and Paracel are at the second place with 25 true positives. Biofacet has the lowest
score: only 23 true positives. Note that differences are very small, which is a reason to look at the ROC and
mean AP scores. FASTA and SSEARCH have both the highest ROCS50 scores and the highest mean APs.
ParAlign and BLAST are third and fourth, followed by Paracel and Biofacet. The ROC and mean AP scores
give a clearer view of the differences between the algorithms than the FFP or NTP scores, because they take into

account the ranking of all hits instead of just the first false positive or just the true positives.

Table 3. Scores for bacterial enoyl-ACP reductase

E. coli enoyl-ACP reductase pce bfz ble fae ss e pae
ROC score 0.156 0.124 0.250 0.367 0.338 0.229
MAP score 0.212 0.161 0.264 0.374 0.343 0.234
First False Polsitive (FFP) 21 24 24 22 24 24
Number of True Positives (NTP) 25 23 27 25 24 24

3.3.4.2 Human progesterone receptor

Table 4 shows our analysis of ASTRAL SCOP entry dla28a , using again the PDB095 set. The structural
family a.123.1.1 has 29 members, so the perfect algorithm should have the first false positive at the 29th hit.
Surprisingly, BLAST scores best here with its first false positive at the 25th hit (Table S.2 [see Additional file
1]), although the differences are quite small. BLAST is, together with Biofacet, the only algorithm that does not
have all the 28 family members of d1a28a_in its top 100 list; d1n83a_ is missing here. The ROC50 and mean
AP analysis of dla28a_ shows again that SSEARCH and FASTA give the best results. Paracel and Biofacet
have the lowest scores once more. The differences are not large enough to put any definite conclusions to the
results of this example, but by combining all ROC and mean AP scores for all ASTRAL SCOP entries, we

created a reliable comparison between all sequence comparison methods.

Table 4. Scores for the human progesterone receptor

H. sapiens progesterone receceptor pce bfz bl e fae ss e pae
ROC score 0.402 0.437 0.513 0.745 0.762 0.573
MAP score 0.504 0.503 0.548 0.727 0.745 0.586
First False Positive (FFP) 22 18 25 23 23 23
Number of True Positives (NTP) 28 27 27 28 28 28
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3.3.4.3 Timing

Table 5 shows the time that each of the six algorithms needs to perform an all-against-all sequence comparison
of the ASTRAL SCOP PDBO095 set. The BLAST algorithm is clearly the fastest, followed by the other heuristic
algorithm FASTA. Of the Smith-Waterman algorithms, ParAlign is by far the fastest. The Biofacet algorithm
needs much time to calculate 2 x 100 randomizations and is therefore the slowest sequence comparison

algorithm.

Table 5. Time for all-against-all sequence comparison of the ASTRAL SCOP PDB095 set.

Method Time
Paracel SW e-value 3 hours *
Biofacet SW Z-score multiple days
NCBI BLAST e-value 15 minutes
FASTA e-value 40 minutes
SSEARCH e-value 5 hours, 49 minutes
ParAlign SW e-value 47 minutes

* estimation because of unavailability Paracel system

3.4 Discussion

The theoretical advantage of the Z-score over the e-value appears to be rejected by our results. Our results show
that the e-value calculation gives an advantage over the computationally intensive Z-score, at least when looking
only at the results from the Smith-Waterman algorithm. Some caution should be taken however, drawing any
definite conclusions. First, the Z-score was designed to make a distinction between significant hits and non-
significant hits that have high SW scores. It might have an advantage over the e-value when applied to the top
hits only, but might have less advantage for the hits with lower SW scores. This idea is supported by the fact
that the Z-score is better at scoring high-similarity sequence pairs. This is also reflected in the different ROC
and AP scores for the PDB010 set and the PDB095 set: the difference between Z-score and e-value increases
when structurally more similar protein pairs are being included. Second, the Z-score can differ for each run,
because of its different randomizations [17]. The standard deviation of the Z-score increases almost
proportionally with the Z-score itself, i.e. for higher Z-scores the variance will be larger [16]. However, the Z-
score increases its precision when more randomizations are calculated (2 x 100 in this study). Third, the PDB set
is somewhat biased: it only contains crystallized proteins, and it contains no hypothetical proteins and
membrane proteins. The crystallized proteins in the PDB are on average smaller than proteins included in large
sequence databases such as the UniProt [26] database (figure 4), whereas the amino acid distribution is

approximately the same for these databases (figure 5).
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Figure 4. Sequence Length Distribution between PDB095 and UniProt

The sequence length increases from the left to the right. The vertical axis shows the number of proteins having that length, as a percentage
of the total set. Black bars: PDB095 set. Dotted bars: UniProt set.
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Figure 5. Amino Acid Distribution between PDB095 and UniProt

The 20 amino acids are displayed on the horizontal axis and their occurrence, as percentage of the total, is shown on the vertical axis. Black
bars: PDB095 set. Dotted bars: UniProt set.
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Figure 6 shows that the bias in sequence length is not the reason for the difference in scores: if we only look at
proteins with a sequence length of 500 or more, the scores are similar. Other studies have shown that FASTA
performs better than BLAST [18, 27], but these did not include several Smith-Waterman implementations. The
SSEARCH algorithm, an implementation of Smith-Waterman, was analyzed in these studies, but this algorithm
differs from other Smith-Waterman algorithms used in this study due to the use of length regression statistics [7,
28]. A difference can also be found by comparing the SW scores of Biofacet, ParAlign and SSEARCH: Biofacet
and ParAlign have the same SW scores, but the SSEARCH SW scores are different. We calculated the ROC50
and mean AP for these three SW scores and found that the SSEARCH SW scores gives slightly worse results
than the other two SW scores (figure 7). Another problem is that protein sequences within a certain ASTRAL
SCOP family usually have equivalent lengths, since the ASTRAL SCOP database consists of protein domains
and not of whole proteins. Results might vary when whole proteins, with different lengths, are studied.

Unfortunately, the composition of the ASTRAL SCOP database does not allow us to confirm this statement.

Finally, we would like to stress that the results from the CVE analysis might be more reliable than those from
the ROC and mean AP analyses. ROC and mean AP make use of a ranking system based on the e-value or Z-
score, instead of looking at the e-value or Z-score directly. This means that in some cases, especially the smaller
protein families, a large number of very low-scoring hits (e.g. e>100 or Z<3) is still used for the calculation of
the scores. This is not the case for the CVE plots, because we varied the e-value and Z-score thresholds above
which a hit is seen as a true positive, instead of relying on a ranking system. However, because the results from
the CVE plots are similar to the results from the ROC and mean AP graphs, the use of a ranking system does not

seem to give a large disadvantage.
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Figure 6. ROCs, and mean AP values for proteins larger than 500 aa
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The ROCs5 scores are shown at the left half, the mean AP values on the right half. Red bars: calculated using the Paracel Smith-Waterman
algorithm. Blue bars: calculated using the Biofacet Smith-Waterman algorithm with Z-score statistics. Green bars: calculated using the
BLAST algorithm. Yellow bars: calculated using the FASTA algorithm. Purple bars: calculated using the SSEARCH algorithm. Orange

bars: calculated using the ParAlign Smith-Waterman algorithm. Color version on page 157.
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Figure 7. ROCs, and mean AP values for the SW scores of three different SW algorithms.
The ROC5 scores are shown at the left half, the mean AP values on the right half. Blue bars: calculated using the Biofacet Smith-Waterman
algorithm with Z-score statistics. Purple bars: calculated using the SSEARCH algorithm. Orange bars: calculated using the ParAlign Smith-

Waterman algorithm. Color version on page 157.

3.5 Conclusions

For a complete analysis we need a less biased database, having a wide range of proteins classified by structure
similarity. Until such a database is available, it will be difficult to pinpoint the reasons for the different results
between FASTA, BLAST and Smith-Waterman, and the theoretical advantages of the Z-score. Regardless of all
these theoretical assumptions, the computational disadvantage of the Z-score is smaller for larger databases. Z-
scores do not have to be recalculated when sequences are added to the database, in contrast to e-values, which
are dependent on database size. For very large databases containing all-against-all comparisons, this is an
important advantage of the Z-score. Although recalculating the e-values does not take much time when the
alignments and SW scores are already available, this may cause a change in research results that were obtained
earlier. Despite these considerations, we recommend using SSEARCH with e-value statistics for pairwise

sequence comparisons.
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3.6 Methods

3.6.1 Sequence comparisons

For the Smith-Waterman e-value calculation, the ASTRAL SCOP files were loaded onto the Paracel file system
as protein databases and subsequently used as queries against these databases: the set with 10% maximal
identity (PDBO010) against itself, the set with 20% maximal identity (PDB020) against itself, etc. The matrix
used for all sequence comparisons was the BLOSUMG62 matrix [29]. This is the default scoring matrix for most
alignment programs. For all sequence comparisons in this article, the gap open penalty was set to 12 and the gap
extension penalty was set to 1. These are the averages of the default penalties over the six studied methods. Both
the matrix and gap penalties used are suited for comparing protein sets with a broad spectrum of evolutionary
distances, like the PDB set [30, 31]. Per query sequence, the best 100 hits were kept [see section Data

availability], discarding the match of each query sequence with itself.

3.6.2 Receiver operating characteristic calculation

For each query, the 100 best hits were marked as true positives or false positives, i.e. the hit being in the same or
in a different SCOP family than the query. For each of the first 50 false positives that were found, the number of
true positives with a higher similarity score was calculated. The sum of all of these numbers was then divided by
the number of false positives (50), and finally divided by the total number of possible true positives in the
database (i.c. the total number of members in the SCOP family minus 1), giving an ROCS50 score for each query

sequence. The average of these ROCS50 scores gives the final ROC score for that specific statistical value and

that specific ASTRAL SCOP set. Mean ROCS50 scores were calculated for all ten different ASTRAL SCOP sets.

3.6.3. Coverage versus error calculation

Instead of taking the first 100 hits for each query, like in the ROC analysis, we varied the threshold at which a
certain hit was seen as a positive. For the e-value analysis, we created a list of 49 thresholds in the range of 10-
50 to 100. For Z-score, we created a list of 58 thresholds in the range of 0 to 100. Then, for each threshold, two
parameters were measured: the coverage and the errors per query (EPQ). The coverage is the number of true hits
divided by the total number of sequence pairs that are in the same SCOP family, for that specific ASTRAL
SCOP set. The EPQ is the number of false hits divided by the number of queries. We used the most inclusive
ASTRAL SCOP set (PDB095), the least inclusive set (PDB010) and an intermediate set (PDB035) to create the

coverage versus error plOtS.

3.6.4 Average precision calculation

For the calculation of the average precision (AP), the 100 best hits per query were marked again as either true
positives or false positives. Subsequently for each true positive found by the search algorithm, the true positive

rank of this hit (i.e. the number of true positives with a higher score + 1) was divided by the positive rank (i.e.
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the number of hits with a higher score + 1). These numbers were all added up and then divided by the total
number of hits (i.e. 100), giving one AP value per query. The mean AP is the average of all these APs. Mean

APs were calculated for all ten different ASTRAL SCOP sets.

3.6.5 Bacterial enoyl-ACP reductase

The ASTRAL SCOP entry for E. coli enoyl-ACP reductase chain A, d1qg6a , was picked as an example for our
methodology. The 100 best hits of this entry on the PDB095 set were calculated using each of the six algorithms
and sorted by ascending e-value and descending Z-score. Then they were marked as either true positives or false
positives, depending on if the hit was in the same structural family (c.2.1.2) or not. Furthermore, the ROC50

scores and mean APs were calculated.

3.6.6 Human progesterone receptor

A second example is the analysis of d1a28a_, the H. sapiens progesterone receptor chain A. Once more, the 100
best hits of this entry on the PDB095 set were calculated using each of the six algorithms and sorted by
ascending e-value and descending Z-score. These hits were marked as either true positives or false positives,
depending on if the hit was in the same structural family (a.123.1.1) or not. Finally, the mean AP and ROC50

scores were calculated.

3.6.7 Timing

We measured the speed of the sequence comparison algorithms, by doing an all-against-all comparison of the
ASTRAL SCOP PDBO095 set and using the ‘time’ command provided by UNIX. All calculations were
performed on the same machine, except for the Paracel calculation which could only be performed on the
Paracel machine. The Paracel calculation time had to be estimated because of the unaivailability of the Paracel

machine at the time of performing this analysis.
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3.8 Data availability

All raw sequence comparison output files (containing the top 100 hits per query sequence) are available through

our website [32]. The top 100 hits for the two case studies of the bacterial enoyl-ACP reductase (i.e. Table S.1)

and the human progesterone receptor (i.e. Table S.2) can be found there as well.
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4.1 Abstract

4.1.1 Background

Background: Phylogenetic patterns show the presence or absence of certain genes or proteins in a set of species.
They can also be used to determine sets of genes or proteins that occur only in certain evolutionary branches.
Phylogenetic patterns analysis has routinely been applied to protein databases such as COG and OrthoMCL, but
not upon gene databases. Here we present a tool named PhyloPat which allows the complete Ensembl gene

database to be queried using phylogenetic patterns.

4.1.2 Description

PhyloPat is an easy-to-use webserver, which can be used to query the orthologies of all complete genomes
within the EnsMart database using phylogenetic patterns. This enables the determination of sets of genes that
occur only in certain evolutionary branches or even single species. We found in total 446,825 genes and
3,164,088 orthologous relationships within the EnsMart v40 database. We used a single linkage clustering
algorithm to create 147,922 phylogenetic lineages, using every one of the orthologies provided by Ensembl.
PhyloPat provides the possibility of querying with either binary phylogenetic patterns (created by checkboxes)
or regular expressions. Specific branches of a phylogenetic tree of the 21 included species can be selected to
create a branch-specific phylogenetic pattern. Users can also input a list of Ensembl or EMBL IDs to check
which phylogenetic linecage any gene belongs to. The output can be saved in HTML, Excel or plain text format
for further analysis. A link to the FatiGO web interface has been incorporated in the HTML output, creating
easy access to functional information. Finally, lists of omnipresent, polypresent and oligopresent genes have

been included.

4.1.3 Conclusions

PhyloPat is the first tool to combine complete genome information with phylogenetic pattern querying. Since we
used the orthologies generated by the accurate pipeline of Ensembl, the obtained phylogenetic lineages are
reliable. The completeness and reliability of these phylogenetic lineages will further increase with the addition

of newly found orthologous relationships within each new Ensembl release.

4.2 Background

Phylogenetic patterns show the presence or absence of certain genes or proteins in a set of species. These
patterns can be used to determine sets of genes or proteins that (COG) [1] which included a Phylogenetic
Patterns Search (PPS) on its web interface. This phylogenetic pattern tool was further enhanced with the
Extended Phylogenetic Patterns Search (EPPS) [2] tool, providing the possibility of querying the phylogenetic
patterns of the COG protein database using regular expressions. The newest release of the OrthoMCL database,
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OrthoMCL-DB [3], also offers this possibility. However, suchs tool have only been available for querying
proteins, and not for genes. The advantage of looking at gene families instead of protein families, is that the
view on expansions and deletions is not distorted by any alternative transcripts and splice forms. The PhIGs [4],
Hogenom [5] and TreeFam [6] databases all offer phylogenetic clustering of genes, but do not have the
functionality of phylogenetic patterns. Here we introduce a web tool named PhyloPat that creates the possibility

of querying all complete genomes of the highly reliable Ensembl [7] database using any phylogenetic pattern.

4.3 Construction & content

We generated a set of phylogenetic lineages containing all of the genes in Ensembl [7] that have orthologs in
other species according to the EnsMart [8] database. This set covers all of the 21 (eukaryotic) species available
in EnsMart version 40 (pre-versions and low coverage genomes not taken into account). We collected the
complete set of orthologies between these species: 420 species pairs, 446,825 genes and 3,164,088 orthologous
relationships. These orthologies consist of 2,000,706 one-to-one, 795,723 one-to-many and 367,659 many-to-
many relationships, created by the very extensive orthology prediction pipeline [9] from Ensembl. This pipeline
starts with the collection of a number of Best Reciprocal Hits (BRH, proven to be accurate [10]) and Best Score
Ratio (BSR) values from a WUBIastp/Smith-Waterman whole-genome comparison. These are used to create a
graph of gene relations, followed by a clustering step. These clusters are then applied to build a multiple
alignment using MUSCLE [11] and a phylogenetic tree using PHYML [12]. Finally, the gene tree is reconciled
with the species tree using RAP [5]. From each reconciled gene tree, the above mentioned orthologous
relationships are inferred. After the collection of all orthologous pairs, we generated phylogenetic lineages using
a single linkage algorithm. First, we determined the evolutionary order of the studied species using the NCBI
Taxonomy [13] database. The phylogenetic tree of these species, together with some phylogenetic branch names,
can be seen in figure 1. Second, we used this phylogenetic tree as a starting point for building our phylogenetic
lineages. For each gene in the first species (S. cerevisiae), we looked for orthologs in the other 20 species. All
orthologs were added to the phylogenetic lineage, and in the next round were checked for orthologs themselves,
until no more orthologies were found for any of the genes. This process was repeated for all genes in all 21
species that were not yet connected to any phylogenetic lineage yet. The complete phylogenetic lineage
determination generated 147,922 lineages. Please note that the phylogenetic order that we have determined here
does not affect the construction of the phylogenetic lineages in any way: changing the order only influences the
numbering of the phylogenetic lineages but not the contents of the lineages. This is due to our clustering method,
in which each orthologous relationship is treated symmetrically. Figure 2 shows the database scheme: the

phylogenetic lineages and some extra information have been stored in four tables, optimized for fast querying.
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Aedaes asgypt (4)

Anopheles gambiae (3)

Drosophila melanogaster (5)

Culicidae

Ciona savignyi (5)
Caenorhabditis elegans (2)

Diptera

Ciona intestinalis {7)

Coelamata
Chordata

Tetraodon nigroviridis (3)
Saccharomyces cerevisias (1)

Euteleastami

Takifugu rubripes (9)
Henopus tropicalis (12)

Arnniota

Gasterosteus aculeatus (10)
Gallus gallus (13)
Danio rerio (11)

Theria

honodelphis domestica {(14)

Eutheria

Bos taurus (15)

Chapter 4

Euarchontoglires
tlurinze

Rattus norvegicus (17)

Catarrhini
Canis familiaris (16)

hus musculus (18)

Hamao/Pan/Gorilla group
Macaca mulatta (19)

Pan troglodytes (20)
Homo sapiens (21)

Figure 1. Phylogenetic tree of all species present in PhyloPat
This is the unrooted NCBI Taxonomy tree of all species available in Ensembl and PhyloPat. The numbers are the order in which the species

are shown on the PhyloPat results pages. A phylogram version of this tree is available through the website.
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phylopat_embl phylopat_lineages
species varchar(4) hoid varchar(8)
ans varchar{25) scer text
emb! varchar{25) [ cele text
agam text
azeg teut
dme| text
csaw text
cint teut
tnig text
phylopat_hugo trub text
ans varchar{25) gacu text
hugo varchar{10) — < drer text
“tro text
ggal text
mdam text
btau text
cfam text
rnor text
mmus text
phylopat_genes m ol text
species varchar(4) ptro text
ens varchar(25) hsap text
poid varchar(B) pattern varchar{21)

Figure 2. The PhyloPat database scheme
The database scheme shows all four tables used in the application. Table names are in bold, primary keys are in italic. Links between fields

are shown with arrows. The left side of each column shows the field names, the right side shows the field types.

4.4 Utility & Discussion

4.4.1 Utility

We developed an intuitive web interface (figure 3) named PhyloPat to query a MySQL database containing
these phylogenetic lineages and derived phylogenetic patterns. As input a phylogenetic pattern is used,
generated by clicking a set of radio buttons or by typing a regular expression, or a list of Ensembl or EMBL
identifiers. The application of MySQL regular expressions provides enhanced querying. The output can be given
in HTML, Excel or plain text format. A link to the FatiGO web interface has been incorporated in the HTML
output, creating easy access to functional information. Each phylogenetic lineage can be viewed separately by
clicking the PhyloPat ID (PPID). This view gives all Ensembl IDs within the phylogenetic lineage plus the
HUGO [14] gene names. The web interface also provides some example queries, the 100 most occurring
patterns, and numerical overviews of lineages that are present in 1) all species 2) almost all species and 3) only
one or two species. Finally, a phylogenetic tree of all included species is provided, through which each branch

can be selected to view a list of branch-specific genes. This tree can be downloaded in PHYLIP [15] format.
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[ PhyloPat :: Menu_ | [ PhyloPat :: Phylogenetic Patterns :: Pattern Search
Home Choose your phylogenetic pattern:
Sacch. [Caenor.| Anoph. [ Aedes | Dros. Tetr. [enopus| Gallus [Moned.| Bos | Canis |Rattus| Mus |Macaca] Pan | Home
cerev. el bi i melan. tropic. | gallus idomest.| taurus | famil. [norveq. muscul. mulattal trogl. | sapiens
Pattern Search 1 (2) (3) (‘Ur (5) (12) 1_3 (14) | (15 16 17 1§ 19 20 21
\_ " - i & " l
L =~ i v > ! - [
I Search @1 @:|0:]|0:| O Ci1| @1 | 01| 01| 01| @@ C1| O] @
Ol O+ @« | @] O~ x| O] OO @Ol @] O=
Top Patterns Co| Ca| O | Qo | @0 G| Co| @o| ©o| O Ca| Oa| @o| Co| O
[aIIUn1 ][al\un*][allunﬂ ]

Example Queries

Or define a regular expression:

Phylogenetic Tree
e.g. ~0*1{10}0*% gives all genes that occur only in ten subsequent species Chelp) (examples)

Oligopresent ;

Oligopresent Show O 50 @ 100 © 200 O 500 O 1000 O all lineages
Polypresent htrnl

Omnipresent [ © 2006 by Tim Hulsen

Figure 3. The PhyloPat web interface (Pattern Search tab)

The web interface has the menu on the left and the input/results page on the right. On the pattern search page, the user can generate a
phylogenetic pattern by clicking a radio button for each species. 1 = present, * = present/absent, 0 = absent. The buttons directly below put
all 21 species on the corresponding mode. MySQL regular expressions offer the possibility of advanced querying. The user can choose to

show any number of lineages and choose the output format: HTML, Excel or plain text. Color version on page 158.

4.4.2 Omnipresent genes

An analysis of all lineages with the phylogenetic pattern '111111111111111111111" (or MySQL regular
expression "“1+$') gives a list of 'omnipresent' genes, i.e. present in all 21 species. We found 1001 omnipresent
genes, which are most likely involved in important functions, since they are present in all species. Figure 4
shows the GO annotation [16] for all 2185 human genes within these omnipresent phylogenetic lineages,
generated by FatiGO [17]. When human genes are present in the output, FatiGO can be queried by clicking a
button below the output. To compare the results, we also show the GO annotation for the complete set of human
genes (31,718 in Ensembl v40). Lines are drawn between similar GO classifications, to facilitate easy
comparison between the omnipresent genes and all human genes. It is clear from the 6th level GO biological
process annotation (figure 4a) that omnipresent genes are less often involved in transcription compared to a
human gene chosen at random, but more often in cellular protein metabolism and establishment of cellular
localization. We suggest that the process of transcription does not need that many genes in the 'lower' species,
but in the 'higher' species, like human, many transcription related gene families have expanded ([18], table 1).
Analysis of the 6th level GO molecular functions (figure 4b) shows that many omnipresent genes have ATP
binding or pyrophosphatase activity, while the human gene set consists for almost 10% of genes with rhodopsin-
like receptor activity. The latter is due to the fact that the GPCR class A family has expanded greatly in
mammals ([19], table 2). Finally, the 6th level GO cellular components (figure 4c) show that a lesser fraction of

the omnipresent genes are integral to the plasma membrane.
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omnipresent all human
a5 Lt bt B B! Yoo Biological process. Level: 6 Biological process. Lewel: 6B U S ! he ! f' o' oo
I o7 cellular protein metabolisn—————cellular protein netabolisn [ R
[ RERH biopolyner nodification transcription [ EERTH
o transcription—’_><regU1ation of nucleobase, nucleoside, nucleo... [ 15.75%
| ETRTS regulation of nucleobase, nucleoside, nucleo? ~biopolyner nodification I 15402
B 11152 establishnent of cellular localization G-protein coupled receptor protein signaling,., [l o.55¢
| RN intracellular transport phosphate netabolisn | R
B 10.74 protein transport nacromnolecule biosynthesis M .51
B 10672 nacronolecule biosynthesis DHA netabolisn W 507
| ERGEd protein biosynthesis protein biosynthesis W 5002
[ RN phosphate netabolisn establishnent of cellular localization W 5.3
b O R e Molecular function. Lewel: B Molecular function. Lewel: 6 | Vo Ve Ve Ve S
[ R ATP binding zinc ion binding .
[ Rt purophosphatase activity. ATP binding  i5.07
I 5.48: GTF binding: rhodopsin-like receptor activity [ X
W s.c02 protein kinase activi protein kinase actiwvity | ol
W .70z zinc ion binding purophosphatase activity W 7.1
B .69 ubiquitin-protein ligase activity ubiquitin-protein ligase activity N s
B .z phosphoric monoester hydrolase activity GTP binding N 4.9z
| R acyltransferase activity iron ion binding B s.a9
B s.382 ATPase actiwvity, coupled to rane Ho.., - phosphoric nonoester huydrolase activity B .04
| iron ion binding hydrogen ion transporter activity | IEEE
C R P T P I PN Cellular component. Lewvel: 6 Cellular component. Level: & R TR R SR
B .o nuclear lunen integral to plasma membrane [ R
| EERTH integral to Mﬁﬂgi stack M .43
B 1081 Golgi stack nuclear lunen W 5.85:
W s.07: nitochondrial envelope nicrotubule cytoskeleton W a0
| K nicrotubule cytoskeleton actin cytoskeleton W 5.
[ nitochondrial inner nenbrane chronatin W a4
W s.:7 actin cytoskeleton nitochondrial envelope W 4308
| R transcription factg nitochondrial inner nenbrane 0 z.s
W 5.412 chronatin nicrosone B s.oz
| R coated vesicle lytic vacuole I 203

Figure 4. Gene Ontology annotations of 1) omnipresent and 2) all human genes

The left side shows the Gene Ontology annotations for all 2,185 human genes in omnipresent lineages. The right side shows the Gene
Ontology annotations for all 31,718 human genes, used as a reference set. Lines are placed between equal annotations for easy comparisons
between the left and the right side. (a) 6th level GO Biological Processes. (b) 6th level GO Molecular Functions. (¢) 6th level GO Cellular

Components.

4.4.3 Oligopresent genes

The distribution of 'oligopresent' genes (genes that exist in only one/two species) can be used to determine
which species are evolutionary most related, as the number of shared genes, that are absent in other species, can
be used as a measure for the phylogenetic distance [20]. It is apparent that are the closest relatives are C.
savignyi and C. intestinalis (1737 oligopresent genes), followed by 7. nigroviridis and T. rubripes (1572
oligopresent genes) and A. gambiae and A. aegypti (1058 oligopresent genes). These results correspond
perfectly with the current opinion on evolutionary relationships. It should also be noted that the number of genes
present in only one species is this high because of the incomplete orthology information contained in the
EnsMart database. This will improve with each new Ensembl release, as orthology information and functional

annotation are expanded in each release.

4.4.4 Polypresent genes

A second measure for evolutionary relatedness is the distribution of 'polypresent' genes: genes that are missing
in only one or two species. S. cerevisiae has the highest number of missing polypresent genes: 961 polypresent
genes do not occur in S. cerevisiae only, and 854 polypresent genes are not present in S. cerevisiae and a second
species. Other high-scoring pairs include both Ciona species (47 absent polypresent genes) and the combination

of one of these Ciona species with G. gallus (16 and 14 absent polypresent genes). The relatively high number
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for the latter pair is striking, because these species are not closely related. One would suspect such a high

number only for two species that are relatively closely related, which is the case for the two Ciona species.

4.4.5 Case study: Hox genes

As a case study we used the highly researched and from an evolutionary point-of-view very interesting Hox
genes. First, we searched the Ensembl database for human genes with the term 'hox' in the annotation. We found
44 genes, which were entered into PhyloPat. The output is shown in Table 1. The lists of Ensembl IDs have
been replaced by the number of IDs. 32 phylogenetic lineages were found, one of which were already present in
C. elegans: PP022041. This lineage contains the Msh homeobox-like proteins. PP024984 and PP027791,
containing the HOXC4 and TLX lineages, are only found in the Coelomata: A. gambiae and further. No less
than 22 lineages originated in the early vertebrates, presented by 7. nigroviridis. HOXD12 and HOXB13 are

only present in mammals.

Table 1. Phylogenetic lineages containing human HOX cluster genes

ppid sc|ce|ag|aaldm|cs|ci |tn |tr |ga|dr|xt |gg|md|bt |cf [rn |mm|mm|pt |hs|pattern gene
PP022041| 0] 1| 1| 1] 1| 1] 1] 3| 6] 5] 6] 2] 2] 3| 3] 2] 3] 3| 2| 2| 2[011111111111111111111 |[MSX1,2
PP024984| 0] o] 1] o] of o] o] 1| 1| 1| 1| 1] o] of 1| 1] 1| 1| 1] 1] 1{001000011111001111111 |[C4
PP027791| 0] 0] 1| 1] 1| 0] o] 2| 3| 3| 4| 3] 2] 3| 3] 3] 3] 3| 3] 3] 3{001110011111111111111 |TLX1,2,3
PP049478| 0] 0] Oof o] of o] 2| 2 1| 1] 5| 3] 1] 1| 2] 3] 2| 2 2| 2| 3{000000111111111111111 |B8,C8,D8
PP053824| 0] 0] o] o] of o] o] 1| 1| 1] 2| o] o] 1| o] 1) of 1| o] 1] 1{000000011110010101011 |[D11
PP053827| 0] 0] Of O] Of o] o] 2 2f 2| 1f 1] 1] 1| 1f 1] 1] 1f 1] 1] 1/0o00000011111111111111 |A10
PP053828| 0] 0] O0f 0] Of o] o] 2f 1| 1] 1f 1] 2] 1] 2] 1] 2| 2 2| 2| 2{000000011111111111111 |C13,D13
PP053829| 0] 0] O0f 0] Of 0] o] 6| 3] 3] 4 1] 1] 2| 2f 2] 2| 2 2| 2| 2/000000011111111111111 |A1,B1
PP053830| 0] 0] 0] o] of o] o] 1| 1| 1] 1f o] o] 1| of 1) 11 1f 1] 1] 1/000000011110010111111 [B4
PP053832| 0] 0] 0] o] Oof o] o] 2f 1| 1 1f 1] o] 1| 1| 1] 11 1f 1] 1] 1{000000011111011111111 [A5
PP053833| 0] 0] 0f 0] of o] o] 2f 1| 1] 1f o] 1] 1| 1| 1] 11 1f O] 1] 1/000000011110111111011 [B2
PP053834| 0] 0] 0of o] of o] o] 3 1| 1} of 1) o] 1| 1| 1] 1| 1f 1] 1] 1{000000011101011111111 |[D3
PP053835| 0] 0] 0] 0] of o] o] 2 1| 1} 1f o] 1] 1| 1| 1] 11 1f 1] O] 1{000000011110111111101 [A9
PP053836| 0] 0] 0] 0] Of o] o 2f 1| 1} 1f 1] 1] 1 1| 1) 1@ 1f 1] 1] 1{000000011111111111111 [A3
PP053838| 0] 0] 0of o] of o] o] 2f 1| 1] 1f o] 1] ©of 1f 1] 11 1f 1] 1] 1/000000011110101111111 |C12
PP053839| 0] 0] 0f o] of o] o] 1f 1| 1} 1f 1] 1] 1| 1| 1] 11 of 1] 1] 1{000000011111111110111 |[D4
PP053840| 0] 0] 0] o] of o] o] 2 1| 1| 1| 1] 2] ©of 1 o] 1| 1f 1] O] 1{000000011111101011101 |[C11
PP053842| 0] 0] O] o] of o] o] 4| 3] 2| 2f 1] 1] 1| 1| 1] 1] 1| 1] 1] 1/000000011111111111111 |A13
PP053844| 0] 0] o] o] of o] o] 3| 2| 2| 3 1] o] 1| 1| 1] 1| 1f 1] 1] 1{000000011111011111111 |B5
PP053845| 0] 0] o] o] of o] o] 2 1| 1| 1| 1] 1] 1| 1| 1] 1| 1| o] 1] 1{000000011111111111011 |B3
PP053846| 0] 0] 0of o] of o] o] 2 1| 1] 2f 1] 1] 1| 1| 1) 11 1{ 1] 1] 1{000000011111111111111 |D10
PP053847| 0] 0] 0of 0] of o] o] 2f 2| 2| 1| 1] 1] 1| 1| 1] 1] 1| 1] 1] 1/000000011111111111111 [A2
PP053849| 0] 0] 0of o] of o] o] 3| 4| 1] 5| 1] 1] 3| 2 3] 3] 3| 3] 2| 3/000000011111111111111 |A6,B6,C6
PP053853| 0] 0] o] o] of o] o] 1| 1| 1] of 1] 1] 1| 1| 1] 1] 1| 0] 1] 1{000000011101111111011 [A4
PP053854| 0] 0] 0of 0] of o] o] 3| 2| 2| 5 2| 2] 2| 3] 1] 3] 3| 2| 1] 3/000000011111111111111 |B9,C9,D9
PP053858| 0] 0] 0of o] of o] o] 1| 1| 1] 2f o] o] 1| 1| 1] 1| 1f 1] 1] 1{000000011110011111111 [A11
PP070659| 0] 0] 0] 0] Of o] o] of O] 1] 2f 1] 2] 1| 2] 2] 2| 2 2] 2| 2{000000000111111111111 |A7,B7
PP075622| 0] 0] 0] o] of o] o] of of of 1f o] o] of 1| 1] 1| 1| 1] 1] 1{000000000010001111111 |C5
PP084287| 0] 0] of o] of o] o] of of of of 1] 1] of 1| 1] 1] 1f 1] 1] 1/000000000001101111111 |C10
PP085049| 0] 0] 0f 0] Of 0] o] of of o] of 1] o] 1| 1f o] 1] 1f 1] 1] 1/000000000001011011111 |D1
PP087941| 0] 0] 0f o] of 0] o] of of of of o] 1] 1| 1f o] 11 1f 1] 1] 1/000000000000111011111 |D12
PP089685| 0] 0] 0] 0] Of 0] 0] of Oof of of O] 1] 1| 1f 1] 1] 1f 1] 1] 1/000000000000111111111 |B13
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Striking observations can be made with the fish species: all three species have significantly more Hox genes
than the mammals. 7. nigroviridis, for example, has 57 genes in this lineage, while M. domestica has only 35.
These numbers correspond well with the fact that Teleost fish have at least seven Hox clusters, whereas
mammals have only four [21]. Mammals also have less Hox genes per cluster, demonstrating that there has been
gene loss within the Hox clusters since the evolution from a vertebrate ancestor to present-day mammals [22].
Table 2 shows the further analysis of the Hox genes using the PhyloPat output. H. sapiens misses the genes
HOXA8, HOXB10, HOXB11, HOXCI1, HOXC2, HOXC3, HOXC7, HOXD2, HOXDS5, HOXD6 and HOXD?7.
The absence of these 11 genes is in agreement with current knowledge of human Hox genes (figure 3a of [22]).
Two exceptions exist: HOXCS instead of HOXC?7, and the absence of HOXA12. The HOXA12 gene cannot be

found in the other mammals either.

Table 2. Analysis of phylogenetic lineages containing human HOX cluster genes

ppid(s) name |cluster A |cluster B | cluster C | cluster D |first sp. | position
PP053829,PP085049 HOX1 | HOXA1 HOXB1 HOXD1 | T. nigrov. | anterior
PP053847,PP053833 HOX2 |HOXA2 |HOXB2 T. nigrov. | anterior
PP053836,PP053845,PP053834 HOX3 |HOXA3 |HOXB3 HOXD3 | T. nigrov. | PG3
PP053853,PP053830,PP024984,PP053839 HOX4 |HOXA4 |HOXB4 |HOXC4 |HOXD4 [A.gamb. |central
PP053832,PP053844,PP075622 HOX5 |HOXA5 |HOXB5 |HOXCS5 T. nigrov. | central
PP053849 HOX6 |HOXA6 |HOXB6 |HOXC6 T. nigrov. | central
PP070659 HOX7 |HOXA7 |HOXB7 G. acul. |central
PP049478 HOX8 HOXB8 |HOXC8 |HOXD8 |C.intest. |central
PP053835,PP053854 HOX9 |HOXA9 |HOXB9 |HOXC9 |HOXD9 |T. nigrov. | posterior
PP053827,PP084287,PP053846 HOX10 | HOXA10 HOXC10 |HOXD10 |T. nigrov. | posterior
PP053858,PP053840,PP053824 HOX11 | HOXA11 HOXC11 |HOXD11 |T. nigrov. | posterior
PP053838,PP087941 HOX12 HOXC12 |HOXD12 |T. nigrov. | posterior
PP053842,PP089685,PP053828 HOX13 |HOXA13 |HOXB13 |HOXC13 |HOXD13 |T. nigrov. | posterior
PP027791 TLX TLX1 TLX2 TLX3 A. gamb.

PP022041 MSX MSX1 MSX2 C. eleg.

4.4.6 Functional annotation

PhyloPat can be used for annotation of genes with unknown functions. When a gene with unknown function is
clustered in a certain phylogenetic lineage, the function of other genes in that lineage can be assigned to the
gene with unknown function. For example, the PP001723 lineage [23] contains a number of genes that have an
unknown function, under which the ENSANGGO00000008970 gene from 4. gambiae and the
ENSCING00000000880 gene from C. intestinalis. By using the orthology information provided by Ensembl and
the PhyloPat clustering into one lineage, we can see that all of these genes are connected to the human gene

KLHDCA4. This function can now be assigned to the genes with unknown function.

4.4.7 Discussion

The above examples show that PhyloPat is useful in evolutionary studies and gene annotation. It continues on
the concept of phylogenetic pattern tools like EPPS [2], and on gene databases like TreeFam [6] and Homogen

[5]- The originality of PhyloPat lies in the combination of these two aspects: phylogenetic pattern querying and

gene family databases. In PhyloPat it is possible to determine a species set that should be included (1), a species
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set that should be excluded (0) and a species set which presence is indifferent (*). This, and the use of regular
expression queries, enables quite complicate phylogenetic patterns searches and clustering. For example, with
PhyloPat it is quite easy to find two sets of genes that have completely anti-correlating patterns (like
'001111100011000000000" and '110000011100111111111"). Some of these genes from the different sets might
turn out to be analogous, i.e. performing the same function but having different ancestor genes. Such kind of
analysis is very hard to do with TreeFam or Hogenom. Furthermore, we aim to provide an easy-to-use web
interface in which the Ensembl database can be queried using phylogenetic patterns. In just one second, users
can see which gene families are present in a certain species set but missing in another species set. The output of
our application can be easily analyzed by the FatiGO tool, like we demonstrated in figure 4. Finally, PhyloPat
has the advantage of only relying on the Ensembl database. Treefam and Hogenom use a wide range of gene and
protein databases, each with their own standards and methodologies. By using only the Ensembl database
(considered by many to be the standard genome database) as input, we create a non-redundant database, through

which it is possible to easily study lineage-specific expansions of gene families.

4.5 Conclusion

The analyses of the oligopresent, polypresent and omnipresent genes, as well as the small case study of the Hox
genes, are just a few examples of what can be done with phylogenetic patterns in general and PhyloPat in
particular. Using this tool, it is easy to find genes that e.g. occur for the first time in vertebrates, occur only in a
specific number of species, or are unique for a certain species. It will be of help in the annotation of genes with
unknown functions. By comparing the genes in lineages with anticorrelating patterns, it will also help finding
analogous genes. PhyloPat will be completely recalculated with each major Ensembl release to ensure up-to-
date and reliable phylogenetic lineages.

4.6 Availability and requirements

PhyloPat is freely available at http://www.cmbi.ru.nl/phylopat/.
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5.1 Abstract

The immune system is of major importance since it protects metazoans from infection by pathogenic organisms.
Throughout evolution, two major branches have originated: innate and adaptive immunity. Innate immunity uses
the genetic memory of germline-encoded receptors to recognize the molecular patterns of common pathogens.
Adaptive immunity is a complex system by which the body learns to recognize a pathogen’s unique antigens
and builds an antigen specific response to destroy it. The innate immune system exists in a wide range of
metazoans, whereas the adaptive immune system is only present in jawed vertebrates. Both the innate and the
adaptive immune system are intensively studied by scientists working in the field of drug discovery, since
numerous drugs are active in immunologic pathways. However, immunologic drug discovery is difficult since
there are sometimes large differences in drug response between model organisms and man. These differences

might be explained by studying the evolution of genes involved in the immune system.

In this article we present an overview of the evolution of the immune system from several model organisms to
man, using whole-genome data from a wide range of species. First, we use the Ensembl database and the
PhyloPat application to create phylogenetic lineages related to the immune system. These lineages are available
through our web application ImmunoPhyle at http://www.cmbi.ru.nl/immunophyle. Second, we identify lineage-
specific expansions and deletions within the vertebrate immune system. This identification is made easier
because of the use of genome data instead of proteome data: our view is not disturbed by alternative transcripts
or isoforms. Third, we show the evolutionary differences between the innate and the adaptive immune system.
Finally, we zoom in on several interesting families and show how our data can be mapped onto pathways. We
conclude that our analyses can be used to explain differences in (immunologic) drug responses between model
organisms and man, but that in most cases a combination of orthology data, expression data, protein interaction

data and structural data is needed to find a sufficient explanation.

5.2 Introduction

5.2.1 Immunity: innate and adaptive

The immune system protects metazoans from infection by pathogenic organisms. It is divided into two major
branches, termed innate and adaptive immunity [1]. Innate immunity uses the genetic memory of germline-
encoded receptors to recognize the molecular patterns of common pathogens. Adaptive immunity, closely
related to somatic memory, is a complex system by which the body learns to recognize a pathogen’s unique
antigens and builds an antigen specific response to destroy it. The effective development of the overall immune
response depends on careful interplay and regulation between innate and adaptive immunity. The innate immune
system exists in a wide range of metazoans [2], whereas the adaptive immune system is only present in jawed
vertebrates or ‘gnathostomes’ [3], although recent findings suggest that this line might not be as solid as thought

before [4, 5].
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5.2.2 Innate immunity

The innate immune response fights infections from the moment of first contact and is the fundamental defensive
weapon of multicellular organisms [6]. The family of Toll receptors has a crucial role in immune defence.
Studies in fruitflies and in mammals reveal that the defensive strategies of invertebrates and vertebrates are
highly conserved at the molecular level, which raises the exciting prospects of an increased understanding of
innate immunity. However, the function of Toll receptors differs between mammals and Drosophila, raising
intriguing questions about the mechanisms of Toll signal reception and the relationship between inflammation
and development. Many human diseases result from the failure of processes in the innate immunity response,
either caused by a primary defect or by medical treatment. The innate system can be subdivided into the afferent
(or sensing) arm and the efferent (or effector) arm, each of which can be further divided into cellular and

humoral components [7].

5.2.3 Adaptive immunity

The adaptive immune system originated approximately 500 million years ago, in vertebrate species [8]. In fact,
there were two different adaptive immune systems that evolved convergently: one in jawed vertebrates, and one
in jawless fish. While the superfamily of jawed vertebrates expanded greatly in the past 500 million years, the
only jawless fish that exist nowadays are the lampreys and the hagfish [9]. Therefore, when referring to ‘the
adaptive immune system’, usually the adaptive immunity evolved in jawed vertebrates is meant. This adaptive
immune system uses somatically rearranged antigen receptor genes to create receptors for virtually any antigen
[10]. The adaptive immune response is slower but more flexible than the innate immune response, and is able to
combat infections that have evolved to evade innate responses. The adaptive immune system has the capacity to

recognize and respond to virtually any protein or carbohydrate imaginable.

5.2.4 Immunogenomics

Several attempts have been made to identify immune-related genes in single species, such as chicken [11],
mouse [12] and man [13]. These studies are very useful in providing answers for species-specific questions
concerning the immune system. For example, thanks to immunogenetic studies following the completion of the
Human Genome Project, we now know that the human immune sub-genome consists of around 1562 genes
(about 7% of the total human genome) [13], not including the immunoglobulin (Ig) superfamily which makes up
over 2% of human genes, possibly constituting the largest gene family in the human genome [14]. However,
these studies do not tell anything about the origin and evolution of this superfamily. With more and more whole
genome data becoming available, from both vertebrates and invertebrates, it is now possible to study the
evolution of the immune system through different species. Genome-wide approaches to study the immune
system are known as immunogenomics [15] or immunomics [16]. In this article we present an overview of the
evolution of the immune system in the vertebrate lineage, using whole-genome data from a wide range of
species. First, we identify lineage-specific expansions and deletions within the vertebrate immune system. This

identification is made easier because of the use of genome data instead of proteome data: our view is not
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disturbed by alternative transcripts or isoforms. Second, we show the evolutionary differences between the

innate and the adaptive immune system. Finally, we zoom in on several interesting families and show how our

data can be mapped onto pathways.

5.3 Methods

5.3.1 Phylogenetic lineages

We used the Ensembl database [17], version 41, as a starting point for our immunogenomics analysis. This
database contains in total 553,721 genes from 26 species: 1 yeast, 6 invertebrate animals, 7 vertebrate non-
mammals and 12 mammals, under which numerous species often used as model organisms for man: D.
melanogaster, M. musculus, R. norvegicus and M. mulatta. A phylogenetic tree of these species can be viewed
in figure 1. We built phylogenetic lineages, i.e. orthologous groups, using a simple single linkage clustering, in
the same way as for the web application PhyloPat [18]. In order to get a immune-specific data set, we gathered
all HUGO [19] gene names included in the Immunogenetic Related Information Source (IRIS, [13]). All
phylogenetic lineages connected to one or more of the 1551 immunologic HUGO names were stored in a
separate database, named ImmunoPhyle. This database now includes 18,933 genes from the 26 species,
including 1,157 genes from H. sapiens. Results are displayed in order from the ‘lowest’ species S. cerevisiae to
the ‘highest’ species H. sapiens (‘low’/high’ corresponding to the longest/shortest evolutionary distance to

man).
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Drozophila melanogaster [5]
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Figure 1. Phylogenetic tree of the 26 species included in our analysis

Unrooted phylogenetic tree of the 26 species included in our analysis, created by the NCBI Taxonomy database [20] and TreeView [21].

5.3.2 IRIS classification

We make use of the classification into 22 categories provided by the IRIS database. Table 1 shows these
categories, together with the number of HUGO gene names, the number of orthologous groups and the number
of genes within these categories. All information is available through our ImmunoPhyle web application
(http://www.cmbi.ru.nl/immunophyle/). Please note that each HUGO gene name can be linked to multiple IRIS

categories.

Table 1. The IRIS categories linked to the phylogenetic lineages

Nr. Abbreyv. Description # HUGO IDs # In;ﬁ::gel)shyle # Genes
1 InImm Innate Immunity 638 272 8640
2 Inflm Inflammation 314 117 4568
3 Chmtx Chemotaxis 192 54 2374
4 Phago Phagocytosis 37 17 890
5 Compl Complement 62 33 958
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6 Cy Ch Cytokines and Chemokines 261 109 2947
7 AdImm Adaptive Immunity 422 140 4983
8 CIRsp Cellular Response 145 63 2358
9 HmRsp Humoral Response 98 34 1087
10 BMImm Barrier and Mucosal Immunity 45 18 713

11 Devlp Development of Immune System 130 50 2044
12 AgPrc Antigen Processing 148 31 830

13 PtSig Immune Pathway or Signalling 470 224 8245
15 Recpt Receptor 246 118 3506
16 IndIm Induced by Immunomodulator 200 86 3487
20 ImDef Involved in Immunodeficiency 71 30 1013
21 Autlm Involved in Autoimmunity 44 19 530

22 ExplIT Expressed Primarily in Immune Tissues 332 134 3970
23 Other Other 107 43 1843
25 InKil Innate NK Killing 82 33 1015
26 RIDis Related to Disease 172 91 3141
27 Coagl Coagulation 111 51 2624
0 All All immunologic lineages 1542 585 18933

5.4 Results

5.4.1 Expansions and deletions

Table 2 shows how many genes are linked to each category, for each of the 26 species in our dataset. From this

table, it is obvious that the immune system is largely restricted to vertebrates: 7. nigroviridis, the first vertebrate

in the list, contains almost four times as many immunorelated genes as C. intestinalis, the last non-vertebrate in

the list. This can also be concluded from figure 2, which shows an analysis of the species occurrence in the

phylogenetic lineages. The largest differences can be seen in the transition from invertebrates (C. intestinalis) to

vertebrates (7. nigroviridis) and from non-mammals (G. gallus) to mammals (M. domesticus). Moreover, this

figure shows that D. novemcinctus, L. africana and O. cuniculus have a large number of deletions. This

probably points to the lesser quality of the genome assembly rather than to any real evolutionary deletions.

Expansions can also be viewed easily using ImmunoPhyle. The largest expansions per species can be seen in

table 3.

Table 2. Numbers of genes per category and per species
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Figure 2. Analysis of species occurrence in phylogenetic lineages
Analysis of the occurrence of the 26 species in the 585 ImmunoPhyle phylogenetic lineages. Light grey: number of lineages that started in
the corresponding species, or earlier. Medium grey: total number of lineages which contain one or more genes from the corresponding

species. Dark grey: number of deletions in the corresponding species (dark grey = light grey — medium grey).

Table 3. Largest expansion(s) per species

Nr. | Species # 1P HUGO
1 S.cer. 4 | IPO17 HSPA1A,HSPAIB,HSPA1L,HSPAS
2 C.ele. 7 | 1P00OS CPB2
1P090 NR3Cl1
3 A.gam. 10 | IPOO8 CPB2
4 A.aeg. 21 | IP0O08 CPB2
5 D.mel. 14 | 1POO8 CPB2
6 C.sav. 9 | IP069 TRAF3,TRAF4,TRAF5
7 C.int. 10 | IP069 TRAF3,TRAF4,TRAFS
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1P162 Co
8 T.nig. 15 | IP033 MAPKS8,MAPK10,MAPK11,MAPK12,MAPK13,MAPK14
9 T.rub. 12 | 1PO35 SLC4A1
10 O lat. 13 | IP0O35 SLC4A1
11 G.acu. 14 | IPO61 ADORA1,ADORA2A,ADORA3,NCR2,PIGR,TREM1
12 D.rer. 19 | 1P047 A2M
13 X.tro. 16 | 1P229 SIGLECS5,SIGLEC6,SIGLEC7,SIGLECS,SIGLEC9,SIGLEC10,SIGLEC11
14 G.gal. 9 | 1PO35 SLC4A1
1P047 A2M
15 M.dom. | 54 | 1P463 CEACAMI1,CEACAMS5,CEACAM6,CEACAMS
16 D.nov. 10 | IPO61 ADORA1,ADORA2A,ADORA3,NCR2,PIGR,TREM1
IP116 LYz
1P129 ANKRD15
1P229 SIGLECS5,SIGLEC6,SIGLEC7,SIGLECS8,SIGLEC9,SIGLEC10,SIGLEC11
17 B.tau. 46 | 1P377 IFNA10,IFNA13,IFNA14,IFNA16,IFNA17,IFNA21
18 C.fam. 14 | 1P377 IFNA10,IFNA13,IFNA14,IFNA16,IFNA17,IFNA21
19 E.tel. 12 | 1PO61 ADORA1,ADORA2A,ADORA3,NCR2,PIGR,TREM1
20 L.aft. 10 | IP0O35 SLC4A1
1P061 ADORA1,ADORA2A,ADORA3,NCR2,PIGR,TREM1
1P147 MS4A12 MS4A4A MS4A6A MS4A6E,MS4A8B
21 R.nor. 17 | IP530 KLRALI
22 M.mus. | 23 | IP061 ADORA1,ADORA2A,ADORA3,NCR2,PIGR,TREM1
23 O.cun. 18 | 1P291 HMGB2
24 M.mul. 16 | 1P377 IFNA10,IFNA13,IFNA14,IFNA16,IFNA17,IFNA21
25 P.tro. 17 | 1P377 IFNA10,IFNAI13,IFNA14,IFNA16,IFNA17,IFNA21
26 H.sap. 16 | IPO61 ADORA1,ADORA2A,ADORA3,NCR2,PIGR,TREM1
1P377 IFNA10,IFNA13,IFNA14,IFNA16,IFNA17,IFNA21
1P463 CEACAMI1,CEACAMS,CEACAM6,CEACAMS

5.4.2 Innate and adaptive immunity

The IRIS database [13] contains 22 different categories of the immune system, with each category linked to a
number of HUGO [19] gene names. Figure 3 shows the overlap between the three largest categories: ‘Innate
Immunity’, ‘Adaptive Immunity’ and ‘Immune Pathway or Signalling’. The overlap between all three categories
(25 lineages) consists mostly of interleukins (IL), mitogen-activated protein kinases (MAPK) and killer cell
immunoglobulin-like receptors (KIL). The 22 categories also differ in size: ‘Innate Immunity’ and ‘Immune

Pathway or Signalling’ both contain more than 8,000 genes, while ‘Involved in Autoimmunity’ contains only

530 genes.
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a0

Adaptive
Immunity

Figure 3. Venn diagram of the numbers of phylogenetic lineages linked to specific immunologic categories
Venn diagram of the numbers of phylogenetic lineages linked to ‘Innate Immunity’ (red), ‘Adaptive Immunity’ (green) and ‘Immune
Pathway or Signalling’ (blue) and combinations of these three categories. Each surface is proportional to the number it represents, except for

the overlap between all three categories. Color version on page 158.

As discussed in the introduction, the innate immune system should be present in all species, whereas the
adaptive immune system originated in the vertebrates. Table 2 shows that the phylogenetic lineages of the
adaptive immune system indeed have relatively few member genes in invertebrates: 307 genes divided over the
first 7 species. The first vertebrate in the list, 7. nigroviridis, has 212 adaptive immunity genes. However, the
same trend can be seen in the innate immune system: 489 genes in the 7 invertebrate species, and 351 genes in
T. nigroviridis. This might be caused by the anthropocentrism of our analysis: only lineages are included that are
connected to a HUGO gene name, thus having a member gene in H. sapiens. When phylogenetic lineages are
included that are not present in man, the number of innate immunity genes in invertebrates might increase
drastically. In table 5, we take a closer look at the 48 adaptive immunity genes in the fruitfly D. melanogaster,
using the annotation from the FlyBase [22] database. It shows that these genes are either encoding for proteins
with unknown function that are orthologous to adaptive immunity genes in other species, or encoding for

proteins that are connected to many immunologic categories, such as the heat shock proteins.

Table 5. Fruitfly genes linked to ‘Adaptive Immunity’ category

IPID HUGO Ensembl ID Flybase ID Flybase name

1P001 HM13 CG11840 FBgn0031260 Signal peptide protease

1P003 DPP4 CG11319 FBgn0031835 CG11319
CG32145 FBgn0002997 omega
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CG11034 FBgn0031741 CG11034
IP007 MAEA CG31357 FBgn0051357 CG31357
IPO12 PABPC4 CG5119 FBgn0003031 polyA-binding protein
CG4264 FBgn0001219 Heat shock protein cognate 4
CG31366 FBgn0013275 Heat-shock-protein-70Aa
CG18743 FBgn0013276 Heat-shock-protein-70Ab
HSPAIA CG31359 FBgn0013278 Heat-shock-protein-70Bb
HSPAIB CG6489 FBgn0013279 Heat-shock-protein-70Bc
IPO17
HSPAIL CG5834 FBgn0051354 Hsp70Bbb
HSPAS CG31449 FBgn0013277 Heat-shock-protein-70Ba
CG7756 FBgn0001217 Heat shock protein cognate 2
CG5436 FBgn0001230 Heat shock protein 68
CG8937 FBgn0001216 Heat shock protein cognate 1
1P020 ENTPDS5 CG3059 FBgn0024947 NTPase
P021 KPNAI CG8548 FBgn0024889 karyopher%n al
CG9423 FBgn0027338 karyopherin o3
1P024 ﬁiggé CG12559 FBgn0003256 rolled
MAPK10 CG7393 FBgn0024846 p38b
MAPKI11 CG5475 FBgn0015765 Mpk2
1P033 ﬁggi CG5680 FBgn0000229 basket
MAPK14 CG33338 FBgn0046322 p38c
MAPKS
CG5422 FBgn0005649 Rox8
1P034 TTIIAALII CG4787 FBgn0039572 CG4787
CG12870 FBgn0039570 CG12870
1P039 PTPRCAP CG9Y446 FBgn0033109 coro
CG11958 FBgn0015622 Calnexin 99A
IP040 CANX CG9906 FBgn0030755 CG9906
CG1924 FBgn0030377 CG1924
1P043 LGMN CG4406 FBgn0023545 CG4406
NFKB1
1P045 NFKB2 CG5848 FBgn0000250 cactus
NFKBIA
1P049 TNFRSF25 CG7323 FBgn0036943 CG7323
IP051 DPP8 CG3744 FBgn0039240 CG3744
1P0S2 VNSO CG15793 FBgn0010269 Downstream of rafl
IP055 TOB1 CG9214 FBgn0028397 Tob
ADORA1
ADORA2A
IP061 AE(C)EZA?’ CG9753 FBgn0039747 Adenosine receptor
PIGR
TREMI
1P068 (Z;;F];\l/[ CG6103 FBgn0014467 Cyclic-AMP response element binding protein B at 17A
TRAF3
IP069 TRAF4 CG3048 FBgn0026319 TNF-receptor-associated factor 1
TRAF5
1P0O73 LAT CG8428 FBgn0004571 spinster
IP085 LAMBI CG7123 FBgn0002527 Laminin Bl
1P092 CALR CG9429 FBgn0005585 Calreticulin
1P09%4 ILF2 CG5641 FBgn0038046 CG5641
1P095 PACS1 CG5405 FBgn0020647 Krueppel target at 95D
IP098 ﬁ:ﬁ?‘g CG7097 FBgn0034421 CG7097
IP118 PDCD4 CG10990 FBgn0030520 CG10990
1P144 MAFB CG10034 FBgn0000964 traffic jam

5.4.3 Gene order conservation
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The Ensembl database and our derivatives PhyloPat and Immunophyle offer the possibility of studying the
neighbouring genes of each gene. The conservation of this gene neighbourhood, or gene order, over multiple
genomes has been shown to indicate a functional association between the proteins they encode [23]. Figure 4
shows the gene neighbourhood for phylogenetic lincage IP377 or PP069187. This lineage consists of several
members of the interferon alpha (IFNA) family. These IFNA genes are clustered together on almost each of the
genomes, especially in H. sapiens, P. troglodytes and M. mulatta. This could point to very recent gene
duplications, making the genes in this cluster so-called in-paralogs [24]. The genes in the direct neighbourhood
of the IFNA cluster are functionally related, e.g. PP049505 (KLHL9/KLHL13), PP160667 (PTPLAD2) and
PP057121 (CDKN2B/CDKN2C/CDKN2D). This kind of analysis is possible for all genes in the immune sub-

genome and can, as shown here, give extra information about the evolutionary background of these genes.

Species Chr.

H.zap.
(26)
Pira.
(25)

h.mul.
(24)
i mus.
(22)

R.nar.
(21)

C.fam.
(18)

hd.clam.
[
(15 m

Figure 4. Conservation of gene order for phylogenetic lineage IP377 (IFNA)

Conservation of gene order for phylogenetic lineage IP377 or PP069187, which consists of several members of the IFNA (interferon alpha)
family, for seven species: H. sapiens, P. troglodytes, M. mulatta, M. musculus, R. norvegicus, C. familiaris and M. domestica. For each
species, the most central IFNA gene is shown next to its twenty surrounding genes on the chromosome. Black: gene belonging to the IFNA
phylogenetic lineage. Color: gene belonging to phylogenetic lineage with two or more members in this figure. Grey: belonging to
phylogenetic lineages with only one member in this figure (‘singleton’). Only the final five/six characters of each Ensembl ID or PPID are

shown. Color version on page 159.

5.4.4 Interleukins

The family of interleukins is a good example of how expansions and deletions within the immune system can be
studied using our system of phylogenetic lineages (table 5). According to our analysis, ILF2, ILIRAP and
IL1RAPLI1 are the only interleukins (or interleukin receptors) that originated in invertebrates. Lineage 1P294
shows the well-studied absence of IL-8 in mouse and rat [25, 26]. It is interesting to see that both species do
contain the genes encoding the IL-8 receptor: ILSRA and IL8RB (IP254). Overall, the interleukin receptors
seem to have originated earlier than the interleukins themselves. This evolutionary scenario of recruiting an

ancient receptor into partnership with a novel ligand, seems to be proven by a recent study [27].

Table 5. Number of genes per interleukin and per species

IPID| Sc Ce Ag Aa Dm Cs Ci Tn Tr Ol Ga Dr Xt Gg Md Dn Bt Cf Et La Rn Mm Oc Mm Pt Hs HUGO
1P094 (1 12 1 1 12 11 1111 1 11 1 1 1 1 1 1 3 1 1 ILF2
1P169 I 1 1 1 (11 1 1 1 1 1 1 1 1 1 1 1 1 ILIRAP
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1P181
1P184
1P187
1P188

1P189

1IP190
1P191
1P192
1P193
1P194
1P195
1P214

1P220

1P232
1P254

1P261
1P294
1P348

1P350
1P369

1P385

1P401
1P405
1P421
1P425
1P428
1P433

1P435

1P438
1P442
1P447

1P448

1P453
1P481
1P482

1P495

1P496
1P499
IP515
1P522
1P523
1P531
1P534
1P536
1P539
1P541
1P557
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ILIRAPL1
IL6R
IL13RA2

IL23R

CSF2RB
IL2RB
IL9R

IL21R
LEPR
IL12RB2
IL6ST
IL2RG
IL7R

IL28RA

IL1R1
IL1RL1
IL1RL2

1L20

ILERA
IL8RB

11411
IL8

ILF3

IL20RA
IL22RA2

ILIRAPL2

IL1B
IL1F10
IL1FS
ILIRN

IL1R2
IL4R
IL6
IL13RALI
IL22RAL1

L9

IL28A
IL28B
129

IL5SRA
1L21

IL2RA

1L22
1L26

IL18RAP
IL12RB1

ILS

IL1F6
IL1F9

1L27
1L24
IL2
IL7
IL1F8
IL23A
IL27RA
IL3
IL4
IL1F7
IL3RA
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5.4.5 Toll-like receptor pathway

We used the Toll-like receptor pathway to give an example of how pathways in different species can be mapped
onto each other. Figure 5 shows this TLR pathway together with all other involved components, ultimately
leading to the cell proinflammatory response (right bottom). For each of the pathway’s components, the
occurrence in the 26 Ensembl species was checked by using the ImmunoPhyle application. Table 6 shows that
large interspecies differences can be seen in several components of the TLR pathway. For example, the
lipopolysaccharide binding protein (LBP) is almost only present in vertebrates, but the nematode C. elegans also
contains five orthologs to LBP. The jun oncogene (JUN) seems to be absent in some high vertebrates such as G.
gallus, D. novemcinctus, L. africana and M. mulatta, but has expansions in the fish species (four to seven
orthologs). TLRS5 has multiple orthologs in the fish species as well, whereas all the other species have a
maximum of only one TRLS gene. These differences can be (part of) the solution for differences observed in

immune responses between the studied species.

@1. T 4 o ,‘@ Lp
) T T

o &

Lozoribine Baderial DN A

Role of TLR= 3 and 4 ‘¢_ i ‘3@ ) B
in cel artiviral - R !
tesponse; speciic IR = % ¥ 1 &€ -
TIC M1 -specific P 3 . r T
signalling pathyeys i X i’ i _@_ G IL-11

Figure 5. The toll-like receptor pathway
The pathway ‘Toll-like receptor (TLR) ligands and common TLR signalling pathway leading to cell proinflammatory response’ from the

GeneGo MetaCore™ [28] application. Color version on page 159.
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Table 6. Number of genes in the toll-like receptor pathway per component and per species

IPID [Sc Ce Ag AaDm Cs Ci Tn Tr Ol Ga Dr Xt Gg Md Dn Bt Cf Et La Rn Mm Oc Mm Pt Hs HUGO
1P406 2 1 1 2 2 2 1 2 2 3 2 3 3 TLR1/6/10
IP308 1 2 1 1 1 1 1 1 1 1 1 TLR2
IP197 1 111 1 1 1 1 1 1 1 1 1 1 1 TLR3
1P430 I 1 1 1 11 1 1 1 1 1 1 TLR4
1P289 2 1 1 1 1 1 1 1 1 1 TLRS
IP359 1 1 1 1 1 1 2 2 1 2 2 1 2 2 TLR7/8
IP550 1 1 1 11 TLRY
IP458 1 1 1 1 1 1 1 1 11 IRAK1
1P475 1 1 1 1 1 1 1 1 1 1 1 IRAK2
1P397 11 1 1 1 1 1 1 1 1 1 1 IRAK3/IRAK-M
1P321 1 1 1 1 1 1 1 1 1 1 1 1 11 IRAK4
IP539 11 1 1 1 1 1 1 11 IL4
1P421 11 1 1 1 1 1 1 1 1 1 11 IL6
1P294 1 1 1 1 1 1 1 1 I 1 1 1 IL8
IP145 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 MAP3K7/TAK1
IPO78 5 1 2 3 3 4 5 3 4 4 3 4 4 4 4 4 4 4 LBP
1P484 1 1 1 1 1 1 1 1 1 11 LTA
IP057 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 TOLLIP
1P045 1 1 1 1 2 2 3 3 1 4 4 3 3 4 4 4 2 4 4 |NFKBINFKB2NFKBIA
IP059 1 1 1 1 1 1 3 3 2 2 2 3 2 2 3 JUN/JUNB/JUND

5.5 Discussion

We give the first real overview of the molecular evolution of the immune system from model organisms to man.

Our analysis gives general insights in this evolution and offers a framework for further investigation of

interesting observations. General trends, such as the emergence of the adaptive immune system and the decline

of the innate immune system, can be observed very easily. As shown in the case studies, this approach can also

be used to zoom in on specific gene families or pathways. However, in order to explain differences in drug

response between a certain model organism and man, usually more data is needed than just orthology data. A

combination of orthology data, expression data, protein interaction data and structural data as used in recent

other studies [29, 30] might help solving the problems that are encountered when transferring experimental

results from model organism to man.
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Dynamics of head-to-head genes in vertebrates

6.1 Abstract

A remarkable feature of the human genome is the abundance of adjacent gene pairs (< 1kb in distance) oriented
in a head-to-head (h2h) manner. This type of bidirectional gene arrangement makes overlapping and/or shared
promoter elements possible, which could have biological importance. Where previous comparative analyses on
the evolution of adjacent h2h genes pairs mainly focused on only h2h gene pairs and/or a limited number of
genomes, we here present a comprehensive analyses of the evolution of h2h gene pairs in a variety of vertebrate
genomes in relation to the evolution of the two other gene pair orientations: head-to-tail (h2t) and tail-to-tail
(t2t). A random gene organization is observed in most vertebrate and invertebrate genomes in analyses without
any constrains in distances between neighboring genes, whereas analyses on adjacent gene pairs (<600 bp) show
an enrichment of h2h gene pairs in tetrapods (amphibians, birds and mammals), an enrichment of h2t gene pairs
in Tetraodontidae fishes plus urochrotates and close to random gene organization in invertebrates, indicating a
transition from a random gene organization pattern in invertebrates to an enrichment of adjacent h2t gene pairs
in fish/urochordates and an enrichment of h2h gene pairs in tetrapods. While previously the border for
enrichment of h2h gene pairs was set arbitrary at 1000bp, we found that the enrichment of h2h gene pairs in
tetrapods is defined by an intergenic distance of less than 600bp with an optimum in human at 150bp. Analyses,
in other vertebrates, on the conservation in orientation and intergenic distance of adjacent human gene pairs,
shows that h2h gene pairs are not better conserved in orientation than are adjacent human h2t or t2t gene pairs,
however h2h gene pairs are better conserved as adjacent gene pairs (<600 bp) than are h2t and t2t gene pairs.

This indicates an evolutionary constraint against separating adjacent h2h gene pairs.

Then tracing back the origins of adjacent human gene pairs in the vertebrate lineage, it is noticeable that the
interchromosomal events leading to present human adjacent gene pairs are the same for the three gene patterns,
whereas intrachromosomal events leading to a decrease in intergenic distance happened earlier in vertebrate

evolution for h2h gene pairs than for h2t and t2t gene pairs.

Expression analyses on human and mouse tissue data show that all three adjacent gene patterns are positively
correlated when compared to random, with h2h gene pairs only slightly more co-expressed than h2t and t2t gene
pairs. Furthermore, a reverse convergent relation in gene pair co-expression with increased intergenic distance is

observed, which could in part count for the higher co-expression of h2h gene pairs.

6.2 Introduction

In recent years the number of sequenced vertebrate genomes has increased dramatically, making possible a
variety of comparative analyses which finally will result in a profound understanding of the evolution of
vertebrate genomes in general and the evolution of the human genome in particular. One notable discovery in
the human genome, alongside the unexpected relative small numbers of genes, is the enrichment of gene pairs
located head-to-head (h2h) with less than 1000bp between transcription start. This type of gene pair

arrangement results in so-called bi-directional promoters which could have overlapping promoter activities.

105

Chapter 6



Chapter 6

Furthermore, their enrichments in the human genome indicate some kind of organized gene structure in higher
eukaryote genomes in line with what is known from the prokaryote genome and could therefore be of biological

importance.

Although h2h gene pairs have been known in vertebrate genomes for more than 20 years, Adachi and Lieber in
2002 [1] were the first to recognize an enrichment of bi-directional gene pairs in the human genome in analyses
of chromosome 21 and 22. Later analyses on whole genomes showed that an enrichment of h2h gene pairs is
also present in rodents [2,3,4] and analyses on expression patterns of human h2h gene pairs indicated either

positive [2], positive and negative [4] or no [5] correlation in expression of adjacent human h2h gene pairs.

We here present a comparative analysis of adjacent h2h gene pairs in vertebrate genomes and relate their

evolution to the evolution of adjacent h2t and t2t gene pairs.

6.3 Materials and Methods

6.3.1 Data sets and gene distribution

In Ensembl (Version 40) [6] the following species were used: Homo sapiens, Pan troglodytes, Macaca mulatta
Rattus norvegicus, Mus musculus, Oryctolagus cuniculus, Canis familiaris, Bos taurus, Loxodonta africana,
Dasypus novemcinctus, Echinops telfairi, Monodelphis domestica, Gallus gallus, Xenopus tropicalis, Tetraodon
nigroviridis, Takifugu rubripes, Danio rerio, Gasterosteus aculeatus, Ciona intestinalis, Ciona savignyi,
Caenerhabditis elegans, Drosophila melanogaster, Anopheles gambiae and Saccharomyces cerevisiae. For all
species the number of h2h, h2t and t2t gene pairs was determined, together with the length of the intergenic

region, by means of python scripting (available from the authors) on the Ensembl Ensmain genome data.

For most of the analysis we used all of the Ensembl species (data shown in supplementary data) but for practical
purpose we only show and discuss the following species: Pt, Mm, Md, Gg, Xt, Tn, Dr and Ci. These species
were chosen to provide a good balance between taxon sampling and quality of genome assembly, gene build and

annotation.

6.3.2 Conservation and dynamics of gene pairs

To determine whether human gene pairs have a conserved localization in other species the list of human gene
pairs was compared to these species via the cross species homology data (Ensortho). Of all the human gene pairs
ortholog gene pairs were constructed by making combinations of the possible orthologs of the individual genes
in that particular gene pair. Of each combinational ortholog gene pair the localization was determined with
possible outcome h2h, h2t, t2t or ‘dc’ (different chromosomes / contigs). In case of localization at the same
chromosome the intergenic distance was determined as well whether or not the two genes were separated by

another gene (GI, gene insertion). Of all combinational orthologous gene pairs the most probable gene pair was
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chosen by taking the gene pair which most resembled the human situation, either in orientation and/or distance.
For query gene pairs for which no orthologous gene pair could be found the term ‘no’ (no ortholog) was used.
With this data not only the conservation of human gene pairs could be determined but it also gives an overview
of the faith of these human gene pairs during vertebrate evolution. We made a vertebrate tree consisting of Hs,
Mm, Rn, Gg, Xt, Tn, Tr, Dr and Ga in which we placed Mm and Rn together in a rodent supergroup and the
four fish species in a fish supergroup. At each branching point and species in the vertebrate tree the relationship
between the ortholog genes of human h2h/h2t/t2t gene pairs could be determined and by this way the events
leading to these gene pairs in human are mapped. The events mapped are “linked”, event in which two genes are
for the first time linked on the same chromosome but not in the orientation present in human.
“Linked(hh/ht/tt)(igi)” is the same as “linked”, but here the two genes are in the same orientation present in

human, either with (IGI, intergenic gene inclusion) or without genes between them.

6.3.3 Gene Expression

To study correlation of gene expression profiles between human and mouse gene pairs, we used an expression
dataset consisting of a subset of pathologically normal human and mouse tissue samples from the Gene Logic
BioExpress Database product [7]. The human dataset consists of 3,269 tissue samples in 115 tissue categories
and 44,792 cDNA fragments, the mouse dataset of 859 tissue samples in 25 tissue categories and 36,701 cDNA
fragments [8]. First, the Pearson correlations between the expression profiles of all cDNA fragments in the
human set and all genes in the mouse set were calculated. A perfect correlation has a score of 1; a perfect anti-
correlation has a score of -1. Second, the Affymetrix fragment IDs of the chip data were mapped to the Ensembl
IDs used in our study. Finally, the correlation coefficients were mapped for human and mouse Ensembl h2h, h2t
and t2t gene pairs and 6000 randomly assembled gene pairs as control. In the case that one Ensembl ID was
mapped to multiple Affymetrix fragment IDs, the average of the multiple correlation coefficients was

calculated.

6.4 Results

6.4.1 Gene Organization of Adjacent Gene Pairs

Ensembl [6] provides a comprehensive and integrated source of annotation of genome sequences and provides
orthology links between genes in annotated genomes. This makes this database particularly suitable for
analyzing the evolution of gene organization among different species and reasoning our used of Ensembl for our
analyses. In a genome, tandem gene pairs can be organized in three different ways: 1) head-to-tail (h2t):
neighboring genes are on the same strand, 2) head-to-head (h2h): genes on different strands with 5’ends toward
each other, and 3) tail-to-tail (t2t): genes on different strands with 3’ends toward each other. In case of random
gene distribution between neighboring genes the three patterns of gene organization should be 50%, 25% and
25%, respectively. When comparing the distributions of neighboring genes, without any limitation in distances

between the two genes, such a random distribution pattern is observed in most vertebrate and invertebrate
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genomes (figure S1). This indicates that gene organization, on a whole, is random in vertebrate and invertebrate
genomes. When plotting the number of h2h, h2t and t2t gene pairs against intergenic distance an enrichment of
h2h gene pairs is observed in tetrapods from an intergenic distance of <600bp (figure 1). Thus the enrichment of
h2h gene pairs is not restricted to mammals but go all the way back to the ancestor of tetrapods suggesting
adjacent h2h gene pair enrichment as a more general phenomenon in vertebrates. Since we want to elucidate this
enrichment we used <600bp as a border/query in subsequent analyses and not <1000bp which has been used by
others in previous analyses. Analyses of adjacent gene pairs in a variety of animal species are shown in figure 2.
In invertebrates and the fish species Danio rerio and Gasterosteus aculeatus a close to random gene
organization of adjacent gene pairs is observed, whereas in urochordates and Tetraodontidae fishes an
enrichment of h2t gene pairs and in tetrapods an enrichment of h2h gene pairs is observed. Thus the pattern in
distribution of adjacent gene pairs seems to be very dynamic and a transition from random via enriched h2t to

enriched h2h gene pairs seems to have occurred through the evolution of vertebrates.
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Figure 1. Frequency of adjacent head-to-head (black with diamonds), head-to-tail (gray) and tail-to-tail (dotted gray line) gene pairs in

Homo sapiens, Gallus gallus, Xenopus tropicalis and Tetraodon nigroviridis. The frequency is calculated by dividing the number of gene
pairs per 50bp of intergenic distance by the total number of gene pairs in the genome. The vertical dotted lines indicate the border for

enrichment of H2H gene pairs.

As seen in figure 2, the described general trends vary between different species such as e.g. between the

different mammals. This could illustrate the natural dynamics of the distribution of adjacent gene pairs, but
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incomplete genome assembly (e.g. some genomes are only sequenced with two time coverage) and gene
annotation may also play a role. Comparisons between different versions of Ensembl indicate that this
sometimes could be relevant. Especially between the first versions of a genome in Ensembl large changes in the
results are observed, whereas after a few updates hardly any differences are found. Thus, the genomes of several
query species will probably be improved in genome assembly, gene build and annotation in future Ensembl
releases and hereby give a more accurate view of the differences between species. In order to avoid this problem
as much as possible we choose to use the presumable best annotated genomes but still keeping a well spread

sampling of vertebrate genomes (see M&M for details).
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Figure 2. Distribution of h2h, h2t and t2t gene pairs with <600bp of
60% intergenic spacing in relation to the total numbers of gene pairs with
intergenic distance of <600bp. Dotted lines indicate 25% and 50%
BO% - === distribution which is the expected distribution of h2h/t2t (25%) and
h2t (50%) by random gene organization. The different taxonomic
40% classifications are indicated below the species abbreviations. The
abbreviations are: Hs (Homo sapiens), Pt (Pan troglodytes), Mu
30% (Macaca mulatta), Mm (Mus musculus), Rn (Rattus norvegicus), Oc

(Oryctolagus cuniculus), Cf (Canis familiaris), Bt (Bos taurus), La

(Loxodonta africana), Et (Echinops telfairi), Dn (Dasypus
20% novemcinctus), Et (Echinops telfairi), Md (Monodelphis domestica),
Gg (Gallus gallus), Xt (Xenopus tropicalis), Tn (Tetraodon
10% nigroviridis), Tr (Takifugu rubripes), Dr (Danio rerio), Ga

(Gasterosteus —aculeatus), Ci (Ciona intestinalis), Cs (Ciona

Hs Pt MuMm Rn Oc Cf Bt La Et Dn Md Oa Gg Xt Tn Tr Ga Dr Ci CsCe Dm Ag Sc savignyi), Ce (Caenorhabditis elegans), Dm (D}"OSOphila

Mammals Fish melanogaster), Ag (Anopheles gambiae) and Sc (Saccharomyces
Tetrapods Urochordates
Vertebrates Invertebrates

cerevisiae).
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6.4.2 Mechanisms of h2h creation

A possible explanation for the enrichment of h2h gene pairs in tetrapods could be a selective elevating in gene
clustering. To test this hypothesis the level of clustering was determined by counting the occurrence in which an
adjacent gene pair has a neighboring gene located within 1kb (figure 3a). It appears that adjacent h2h genes have
a considerable lower percentage of clustering than adjacent h2t and t2t gene pairs, indicating that gene clustering

is not responsible for the enrichment of adjacent h2h gene pairs.

Another possibility for the source of adjacent h2h genes could be gene duplication events. If so the numbers of
adjacent paralog h2h gene pairs should be higher than for h2t and t2t gene pairs. Paralogous genes within a
species was identified via the paralogy links in Ensembl, and the percentages of paralog gene pairs within the
three gene pair organizations are shown in figure 3b. Ten percent of the total group of h2t gene pairs is made up
of paralog genes while in the group of h2h and t2t gene pairs four percent are made up of paralog genes. For the
group of adjacent h2t and t2t genes the level of paralogous gene pairs is halved to respectively five and two
percent, however the decline in adjacent paralogous h2h gene pairs is 75% (from four to one percent). Thus,
adjacent h2h genes contain half as many paralogous gene pairs relative to adjacent h2t and t2t gene pairs,

excluding gene duplications as a driving factor in creating adjacent h2h genes.
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Figure 3. (a) The level that adjacent h2h, h2t, t2t gene pairs (<600bp) are part of a gene clustering. The level of gene clustering is defined
by the percentage of adjacent gene pairs having a neighboring gene within 1000bp. Species abbreviations as in figure 2. (b) Percentage of

human h2h, h2t and t2t gene pairs which consist of paralog genes.

6.4.3 Conservation and Dynamics of enriched h2h gene pairs

If there is an evolutionary pressure for adjacent h2h genes to stay together due to functional relevance than this

gene arrangement should be more conserved than that of h2t or t2t genes. Therefore it would be interesting to
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compare the level of conservation of the adjacent h2h gene organization to that of the adjacent h2t and t2t gene
organizations. For the adjacent human h2h, h2t and t2t genes the gene organization conservation was determined
both by looking whether the orientation is conserved and also if the orientation and close proximity (<600bp) is
conserved (figure 4a). The conservation percentages are relative to the number of orthologous gene pairs found,
thus correcting for missing orthologs due to incomplete gene annotation and orthology determination. The
conservation of gene organization is equal for adjacent human h2h, h2t and t2t genes, when only using the
orientation criterion. When using both the orientation and distance criteria, then there is more conservation of
adjacent h2h genes than h2t and t2t genes, mostly in non-mammalian species. Concluding that there is no higher
evolutionary pressure for keeping adjacent h2h genes in that organization compared to h2t and t2t genes, but
there is more pressure for keeping adjacent h2h gene pairs together than there is for h2t and t2t gene pairs. In
addition we also looked at what organization gene pairs gained if not conserved (figure 4b). The results are in
general the same for the three gene organization patterns. The greater part of non-conserved gene pairs are
located on different chromosomes, but if still located on the same chromosome the majority of the changes in
organizations are due to a single gene inversion (e.g. from h2h to h2t) and a lesser part to two subsequent gene

inversions (e.g. from h2h to t2t).

To understand the characteristics of events leading to the enrichment of adjacent h2h gene pairs in humans the
history of adjacent h2h gene pairs (and adjacent h2t/t2t for comparison) was tracked down to the divergence of
chordates and vertebrates. Of each adjacent human gene pair (<600bp intergenic distance) the status of the
orthologous gene pairs in vertebrates genomes was determined and events were plotted in a phylogenetic tree
(figure 5). The tree consists of 5 branches containing the species (1) Hs, (2) Mm+Rn, (3) Gg, (4) Xt, and (5)
Tn+Tr+Dr+Ga. Species were combined on branches to keep a more reliable and general view. In species
phylogenetically close to humans, more intrachromosomal changes than interchromosomal took place, but in
species phylogenetically further apart more interchromosomal changes took place than intrachromosomal
changes. The most intrachromosomal events happened early in vertebrate evolution, later interchromosomal

events led to adjacent gene pairs.

100% EWH2H

mH2T

90% - T2T
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10%
e EERELELEL,

>0 <600 >0 <600 >0 <600 >0 <600 >0 <600 >0 <600 >0 <600 >0 <600
Pt Mm Md Gg Xt Tn Dr Ci

()

111

Chapter 6



Chapter 6

(b) 100% - H2H

W H2H W H2T © T2T % DC

80%

60% -

40%

20% -

Pt Mm  Md Gg Xt Tn Dr Ci
100% 1

EH2H W H2T 1 T2T = DC
80%
60%

40% -

20%

Pt Mm Md Gg Xt Tn Dr Ci

100% - T2T
- WH2H W H2T © T2T # DC
80% -
60% -
40% -
20% -

Pt Mm  Md Gg Xt Tn Dr Ci

Figure 4. (a) Conservation of adjacent human h2h, h2t and t2t gene pairs. Conservation was determined by looking whether the orientation
is conserved (first column) or if the orientation and close proximity (<600bp) is conserved (second column). The percentages of
conservation are relative to the number of orthologous gene pairs found, thus correcting for missing orthologs due to incomplete gene
annotation and/or orthology determination. (b) Localization of non-conserved human adjacent gene pairs. Conserved adjacent human h2h,
h2t and t2t gene pairs are displayed alongside location of non-conserved gene pairs. DC indicates that the human gene pair is located on

different chromosome/contigs in that species. Species abbreviations as in figure 2.
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Figure 5. Of each adjacent human gene pair (<600bp intergenic distance) the status of the orthologous gene pairs in vertebrates genomes
was determined and plotted in the vertebrate tree. The tree consists of 5 branches containing the species Hs, rodents (Mm, Rn), Gg, Xt and

fish (Tn, Tr, Dr, Ga).

6.4.4 Expression

The transcriptional co-regulation of head-to-head promoters via potential shared cis-elements has been subject
to several investigations, with similar but not equal results due to small differences in methodology and datasets.
All methods used microarray datasets to construct distribution plots of the Pearson expression correlation
coefficients between head-to-head genes. The general idea is that adjacent h2h gene pairs are positively or
negatively co-regulated resulting in the form of Pearson correlation coefficients more closely to values of -1
(anti-regulation) or +1 (co-regulation) when comparing to non-regulated gene pairs. One report [1] mentions a
shift in the distribution towards positive correlation while another [10] reports a bimodal distribution with peaks
towards negative and positive correlation. Both reports use the same methodology but different cell line specific

microarray datasets.

By using the Affymetrix microarray data from the Gene Express database the Pearson correlation coefficients
between co-regulation and gene organization and/or intergenic distance length could be investigated for 115
human tissue categories and 25 mouse tissue categories. The tissue categories are made up of 3269 human
samples and 859 mouse samples which are all non-diseased normal tissues. The correlation coefficients for the
control (3249 random human gene pairs; 2197 random mouse gene pairs) and adjacent h2h, h2t and t2t gene
pairs were plotted for human and mouse (figure 6a). The control plot for human follows a normal distribution,
however for mouse the control plot is not normally distributed but has a slight positive skewness. In both human
and mouse the plots for adjacent h2t and t2t genes are positively skewed as well but retain their mode around
zero, although h2t has a large shoulder at 0.6 correlation coefficient. In contrast stand both human and mouse
h2h plots which are still normally distributed but the plot have become wider and lower (platykurtic

distribution) and have shifted to the positive side resulting in a mode of the plots at 0.1 and 0.2 correlation
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coefficient respectively. Although all three gene organizations at short distances (<600bp) become more co-

regulated and less anti-regulated than the control, the effect for h2h is larger.
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Figure 6. Expression correlation of adjacent h2h, h2t and t2t gene pairs for which microarray data was available and for a random gene pair
dataset. The relative number of gene pairs with specific Pearson correlation coefficients are plotted against the Pearson correlation
coefficients in increments of 0.2 units. (A) Human distribution plot of 599 h2h (<600bp), 247 h2t (<600bp), 364 t2t (<600bp) and 3249
random gene pairs and mouse distribution plot 401 h2h (<600bp), 145 h2t (<600bp) and 252 t2t (<600bp) and 2197 random gene pairs. (B)
Human and mouse distribution plots of h2h, h2t and 2t gene pairs in several intergenic distance intervals (0-600bp; 600bp-10kb; 10kb-
100kb and 100kb-<).

114



Dynamics of head-to-head genes in vertebrates

Not only the organization of genes effects the expression correlation but also the general distance between genes
is an important contributor to expression correlation. When determining the distribution plots of h2h, h2t and t2t
genes classified into several intergenic distance intervals (0-600bp; 600bp-2kb; 2kb-10kb; 10kb-100kb and
100kb-==) we can clearly conclude that with decreasing intergenic distance the plots become more platykurtic
and positively skewed (figure 6b), with little differences between the three gene orientations. Only when the
intergenic distance drops below 2000bp, then, in human, h2h and h2t shift more to the positive side than t2t,
while in mouse only h2h shifts further to the positive side compared to h2t and t2t. For the genes with less than
600bp this effect is even larger and has been described above. This indicates that positive co-expression of
genes with large intergenic distances is due to chromatin opening and/or other mechanisms acting on large
distances. The effect seen at short distances (less than 2000bp) could be due to the gene organization, although

no hard conclusion can be made because of the variations between human and mouse.

6.5 Discussion

In this article, we described the dynamics of bidirectional gene pairs in vertebrate genomes, and observed trends
that have been described previously. However, we also found some new and interesting results:

- The distance threshold that should be used is 600bp, not 1000bp. The threshold of 1000bp used in previous
studies [1] was probably chosen arbitrarily.

- We have shown the enrichment of head-to-head gene pairs not only in mammals, but also in tetrapods, which
is an extension of other studies [3].

- We related the evolution of head-to-head gene pairs to the evolution of head-to-tail and tail-to-tail gene pairs.

- We tracked the origin and “mechanism of arise” of human adjacent pairs.

- The expression pattern also depends on distance, thus a fraction of the positive expression profile of head-to-
head gene pairs could be explained by the distance. We also use “real” tissue expression data whereas other use
cell lines.

- We observe that head-to-head gene pairs are not better conserved in orientation than are adjacent human head-
to-tail or tail-to-tail gene pairs, but they are better conserved as adjacent gene pairs (<600 bp). Takai and Jones
[5] found that interspersed repeats are strongly excluded from adjacent gene pairs, suggesting that these type of
promoters are not allowed to be “disturbed”, resulting in the enrichments of head-to-head gene pairs in

tetrapods.
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The construction of genome-based transcriptional units

7.1 Abstract

7.1.1 Motivation

Public sequence databases typically contain many EST and (full length) mRNA sequences for every gene. For
many applications it is required that all sequences that correspond to the same gene are grouped together in gene

oriented sequence clusters. We present an algorithm that allows the construction of such transcriptional units.

7.1.2 Results

We constructed transcriptional units for fifteen (mammalian) organisms represented by the UCSC genome
database. We discuss the results obtained for the human and mouse transcriptional units and compared our set of
transcriptional units to the gene oriented sequence clusters obtained from the UniGene, ECgene and AceView
approaches. These results show that the construction of gene oriented sequence clusters is still a challenging task

and open for further improvement.

7.1.3 Availability

The  transcriptional  units for  fifteen  organisms are  available from our  web-site

http://bioinfo.amc.uva.nl/HTMseq

7.2 Introduction

GenBank contains over one million full-length mRNA sequences and over thirty million expressed sequence
tags (ESTs) for many organisms. Genes from, for example, human and mouse, are consequently covered by
many full length mRNA and 3°, 5’ and random primed EST sequences. Several approaches were developed that
automatically partition these sequences in gene oriented sequence clusters, where each cluster ideally contains
all GenBank mRNA/EST sequences that correspond to a specific gene. The UniGene [1], TIGR Gene Indices
(TGI) [2] and the Sequence Tag Alignment and Consensus Knowledgebase (STACK) [3] approaches are the
most well-known but a range of other approaches and database have been developed [4-11]. The TIGR and
STACK algorithms also provide consensus sequences for each sequence cluster. Splice variants detected by the
TIGR method are represented in different clusters, while STACK incorporates different transcript variants in a

single cluster.

Sets of gene-oriented sequence clusters have found many applications including gene discovery, expression
analysis and identification of genomic expression patterns and analysis of alternatively spliced transcripts.
Consequently, the construction of high quality sets of sequence clusters is vital for the correct interpretation of

these applications.
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From the methods available to generate gene-oriented sequence clusters, only UniGene [1], ECgene [10],
AceView [12] and RIKEN [11] use the genomic sequence as a template for the clustering process. UniGene
clusters are available for a large range of (mammalian) organisms, while ECgene only provides H. sapiens, M.
musculus and R. norvegicus clusters. AceView currently provides clusters for H. sapiens, C. elegans and A.
thaliana but has not been updated since 2005. The UCSC genome database [13,14] uses the genome to
determine ‘gene boundaries’ but does not provide an explicit set of sequence clusters. Moreover, the
construction of these gene boundaries is not very well documented and these gene boundaries are not updated
regularly. The RIKEN set of clusters for human and mouse was also assembled using genomic information, but
the resulting clusters do not include all GenBank mRNA/EST sequences. Therefore, in this study we compare

our set of transcriptional units only to UniGene, ECgene and AceView.

The alignment of transcripts to the genomic sequence provides information about the genomic location of the
corresponding genes and, consequently, whether a set of sequences belongs to the same gene. In addition, these
alignments directly provide insight in the gene structure. Despite aforementioned efforts to generate reliable

sequence clusters, it turns out that this is still a challenging task that remains open for improvement.

The UniGene set [1] of gene oriented clusters is probably the most frequently used set but not all details are
documented. UniGene uses a genome-based clustering approach to identify sets of transcript sequences that

correspond to individual genes.

The program Splign’ (http://www.ncbi.nlm.nih.gov/sutils/splign) is used to align transcripts against the
genome. Subsequently, it records the annotated exon boundaries and the association of exons with genes. Any
stringently aligned sequences that share exon-intron boundaries that are identified with only one gene are
grouped together. Unspliced sequences, as well as sequences for which the splicing location or orientation is
uncertain, are associated with an overlapping exon if one exists, or placed against the genome if not. Sequence
orientation is used where there is possible ambiguity of gene orientation. Sequences that do not align to
genomic sequence are grouped together, and transcribed sequences within an interval smaller than 3000
nucleotides that have a common clone of origin are grouped together. Clusters that do not correspond to an
annotated gene and are less than 500 bases downstream 3' of another cluster are considered alternative 3'

termini, and are merged into the upstream cluster.

ECgene [10,15] was developed to detect alternative splicing and starts from BLAT alignments of sequences
against the genome. Erroneous BLAT alignments are corrected and, subsequently, sequences that share splice
sites are grouped together. The direction of each cluster is determined from the intron consensus sequence and
the presence of a polyadenylation tail. Subsequently, unspliced sequences are added to existing clusters or form
new clusters. Finally neighbouring genes within 2 Mbp are merged if they contain ESTs sharing a common

clone of origin.

The AceView approach uses an expert-supervised automatic annotation and is, therefore, not suitable to quickly

build clusters for a large number of organisms. The AceView algorithm is not described in full detail. AceView
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first aligns all publicly available mRNAs and EST sequences on the genome by using an unpublished algorithm.
From these alignments transcripts are reconstructed which are subsequently clustered into genes based on
overlap and shared intron boundaries. Each reconstructed transcript represents a different splice form of that

gene. For each reconstructed transcript a consensus sequence is determined.

Several of our research projects require the availability of a high quality set of sequence clusters but also the
flexibility to change the underlying algorithms when problems are identified. Projects in which we currently use
the transcriptional units include the construction of transcriptome maps [16,17], the identification of SAGE tags
[16], the annotation of microarray probes and the inspection of gene structure with Transcript View [18]. This
prompted for the development of the algorithms presented in this paper and which we here describe in detail.
Although the overall cluster procedure is similar to the procedures taken by UniGene, AceView and ECgene,
many (details of the) steps in our algorithm differ from these other approaches. We applied our algorithms to
construct transcriptional units for fifteen organisms but mainly discuss the results obtained for human and

mouse.

7.3 Methods

7.3.1 Construction of transcriptional units

The construction of transcriptional units comprises six steps (figure 1):

1. Selection of high 4. Identification and resolution
quality alignments . of hybrid clusters that
to reduce number of i contain sequences from
multi-mapping sequences multiple genes
2. Orientation of mRNA/EST 5. Identification of reliable
sequences to determine DNA transcriptional units by
strand on which gene 1s located removing units that don’t

reveal an exon-intron structure
and don't include unique
mapping sequence(s)

l

3. Construction of primary 6. Assignment of a gene
transcriptional units by name to each
clustering sequences witha —— transcriptional unit

overlapping genomic region
on the same DNA strand

Figure 1. Flow diagram depicting the steps taken in our algorithm to construct transcriptional units.
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1. Selection of high quality alignments. The construction of transcriptional units starts with BLAT
alignments of mRNA/EST against the genomic sequence as provided by the UCSC genome database [13,14].
The UCSC genome database only supplies alignments for which the base identity is at least 96% and within
0.5% of the best alignment. Due to the presence of pseudo-genes, gene families or repeat sequences,
ESTs/mRNA can map to multiple genomic positions. For UCSC build hgl8 about 5.1% (374,642) of the
sequences in the genome database align to multiple genome locations involving 12.1% (944,340) of the
alignments. To reduce the number of multi-mapping sequences we identified the most likely genome position by
selecting the alignment with the highest UCSC BLAT alignment score (which is based on the number of
(mis)matches and the number of bases that align to repeat regions) and, if present, additional alignments within
3% of this score. For human, this approach reduces the number of sequences that align to multiple positions to

3.7% (276,088) involving 9.8% (731,289) of the alignments.

2. Orientation of mRNA/EST sequences. To prevent construction of erroneous transcriptional units (genes)
that contain sequences from two overlapping genes on opposite strands one must determine the orientation of
the individual sequences such that these can be assigned to the correct DNA strand. Information about the
splicing sites is used to orient the sequence. The intron splice site GT/AG is used by more than 98% of all genes
[19] and provides the most important source of information for orientation of sequences. Following the choice

made by the UCSC genome browser, we set the minimum length of introns to 32 nucleotides in our algorithm.

If no splicing sites are identified then information about the polyadenylation tail and signal of each transcript
may be used to determine the 3’-end of a sequence [20]. For our algorithm we consider the two most common
signals (AATAAA and ATTAAA) which are used by 80-90% of the transcripts [21]. Several other
polyadenylation signals are known [21-25] and although inclusion of these signals may increase the sensitivity
for detecting 3° sequence ends, this also reduces the specificity and will, consequently, introduce many more
erroneous orientation assignments [26]. Polyadenylation signals generally occur within the last 50 nucleotides of
a transcript (excluding the polyadenylation tail)[27] and, therefore, we search within this region for the

aforementioned two signals.

Two parameters play a role in the determination of sequence orientation from polyadenylation information. The
first one is the minimum length of the polyadenylation (or polyT) stretch required to positively determine
sequence orientation. The second parameter is the presence of the polyadenylation signal within the last 50
nucleotides. To determine the sequence orientation parameters we distinguish between two classes of sequences
(3’-EST/mRNA/RefSeq and 5’-EST/random-EST/unknown), which are annotated by the GenBank sequence
label.

To determine the optimal parameterization we constructed two training sets comprising the 3’-
EST/mRNA/RefSeq sequences (N;=268,744) and the 5’-EST/random-EST/unknown sequences (N,=1,934,284)
for which we could assign the orientation based on the splice sites and which we assumed to be correct. For
these sequences we again determined sequence orientation by requiring a minimum length of the

polyadenylation stretch (from L=0 to L>=19) and including information about the presence (or absence) of a
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polyadenylation signal. Subsequently, we compared these orientation assignments to those based on the splice

sites. From these comparisons we calculated the ratio R of correct to incorrect assignments

#correct orientation assignments

(R=

=— - - - ) and determined the fraction of sequences in these two training
#incorrect orientation assignments

sets that are correctly oriented for different thresholds for the minimum polyadenylation tail length L

) #correct orientation assignments ) i i )
( fraction = ). This fraction will decrease for thresholds that require

#sequences in training set

larger polyadenylation tails since sequences with longer polyadenylation tails will be less common. At the same
time longer tails will result in more reliable orientations. Consequently, there is a trade-off between the fraction

and ratio R for which an optimum must be determined.

Table 1. Cumulative fraction of correctly oriented sequences from training set and ratio R for the 3’ and 5’ sequence classes and for

different combinations of polyadenylation tail length and presence of signal.

Minimum 3' EST/mRNA/RefSeq 5' EST/Random
length PolyA tail only PolyA tail + Signal PolyA tail only PolyA tail + Signal
polyA tail Fraction R Fraction R Fraction R Fraction R
0 n.a. n.a. 0.515 82 n.a. n.a. 0.105 16
1 0.115 2 0.330 269 0.151 3 0.047 82
2 0.087 5 0.304 353 0.058 5 0.041 223
3 0.077 9 0.286 377 0.032 10 0.039 401
4 0.070 11 0.267 382 0.022 18 0.038 564
5 0.065 12 0.253 400 0.017 28 0.037 643
6 0.061 12 0.244 395 0.015 37 0.036 696
7 0.059 12 0.235 386 0.014 47 0.035 740
8 0.056 12 0.227 391 0.013 56 0.034 747
9 0.054 12 0.219 392 0.012 63 0.033 789
10 0.051 12 0.211 391 0.012 70 0.032 769
11 0.048 13 0.203 404 0.011 80 0.030 785
12 0.046 13 0.196 405 0.011 88 0.030 773
13 0.043 14 0.187 393 0.011 92 0.029 778
14 0.040 16 0.175 386 0.010 99 0.027 780
15 0.036 17 0.159 364 0.010 105 0.026 763
16 0.029 17 0.135 321 0.009 115 0.023 752
17 0.023 17 0.106 280 0.008 115 0.020 722
18 0.012 11 0.050 149 0.007 120 0.018 658
>=19 0.004 32 0.017 1545 0.006 118 0.014 603

The results of the sequence orientation are shown in table 1 and figure 2. Figure 2a shows the ratio R versus the
fraction of correct orientations for 3’-EST/mRNA/RefSeq sequences. Clearly, orientation on basis of a
polyadenylation tail in absence of a polyadenylation signal results in much lower R values. Figure 2b shows the
results for 5’EST/random primed or unlabeled sequences. In contrast to the previous case a much lower fraction
of sequences is correctly oriented. We observe that reasonable values for R (>100) are first obtained for

orientation rules that also require the presence of a polyadenylation signal and tail.
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(A) 3'EST/mRNA/RefSeq
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Fraction correct orientations
(B) 5'EST/Random primed
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14 and signal
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\ only
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0 - .\.. T ==5==-=-=2 E— I — — T i
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Fraction correct orientations

Figure 2. Different configurations of two single sequence orientation rules. R denotes the ratio of correct to incorrect orientations. The x-
axis denotes the fraction of correctly oriented sequences. The different points on the curves correspond to polyadenylation tails with
minimum lengths varying from >=19 to 0 (see Table 1) corresponding to small to larger fractions. The upper (blue) curve corresponds to the
orientation rule in which both a polyadenylation tail and signal is required. The lower (purple) curve corresponds to the orientation rule in
which only a polyadenylation tail is required. (a) Orientation of 3° EST/mRNA/RefSeq sequences. (b) Orientation of 5° EST/Random
primed sequences. The curves show the trade-off between the fraction of correctly oriented sequences and ratio R. Furthermore, for

different choice of the polyadenylation tail length it shows the difference between using a rule with and without polyadenylation signal.
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Using the information from table 1 we can construct orientation rules for each sequence class. Potentially we
can construct two rules for each sequence class, i.e., a rule for sequences that contain a polyadenylation tail and
signal and a second rule (with a different parameterization) for the orientation of sequences with only a
polyadenylation tail. For both rules we need to determine the optimal tail length. Subsequently, we determine
whether application of the first rule or a combination of both rules gives the highest performance with respect to
the fraction of correctly oriented sequences and ratio R. The optimal rule(s) can easily be found by determining
the fraction and ratio R for every combination of rules. Table 2 shows the results for the 3’ sequence class for
the combination of two rules with different choices of the polyadenylation tail length. The yellow, blue and
green colours indicate ratios with values above 50, 100 and 200 respectively. We required a ratio of at least
R=100, i.e., one in every hundred assignments will be incorrect. The optimal choice of two rules is indicated by
the red box and was found by identifying the highest fraction for the required minimum ratio. A first rule for the
orientation of 3’-EST/mRNA/Refseq sequences that contain a signal require a minimum tail length of L=1. A
second rule for 3’-EST/mRNA/RefSeq sequences that do not contain a signal requires a tail length of at least
L=15. This combination of rules result in a fraction of correctly oriented sequences of 0.37 and a ratio R=109. If
we, however, compare these values to the fraction (0.33) and ratio (R=269) from Table 1 that are obtained if a
single rule would be selected (i.e., only orientation of sequences that contain polyA signal) we see that the
relative increase in fraction is only 9% while the decrease in ratio R is 55%. We find this trade-off unfavourable
and, consequently, we only use a single rule for the orientation of 3’ sequences. Common choices for the tail
length are L=5 or L=10 but we can now see from table 1 that although this leads to less errors in the orientation,

it also significantly decreases the number of orientations assignments that can be made.

For the 5’ sequence we compiled a table similar to table 2 (supplementary table S3). This resulted in the
selection of two rules. The first rule requires the presence of a polyadenylation signal and a minimum tail length
of L=2 and the second rule that orients the sequences without a signal requires a tail length of at least L=19.
These two rules orient 5% of the 5’ sequences correctly resulting in a ratio R=201. In this case the selection of
two rules compared favourably against the selection of a single rule (i.e., the relative decrease of the ratio was

10% while the increase in fraction was 14%).

Table 2. Fraction correctly oriented sequences and ratio R for the 3” sequence class for different combinations of rules (polyadenylation

tail+signal and polyadenylation tail only).

PolyA signal + tail

0 1 2 3 4 5 6 7 8 9 |10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19

Fraction 0.6310.45(0.4210.40|0.38{0.37]0.36(0.35{0.34(0.33|0.33(0.32|0.310.30{0.29|0.27 {0.25]0.22 | 0.16 |0.13

polyA tail

only 0.6010.42(0.39]0.37|0.35{0.34|0.33{0.320.31(0.31{0.30(0.29(0.28|0.27 [ 0.26|0.25 {0.22|0.19 | 0.14 | 0.10

0.5910.41(0.38]0.360.34{0.33/0.32(0.31{0.30(0.30{0.29 |0.28 [ 0.27|0.26 | 0.25|0.24 | 0.21 | 0.18 [ 0.13 | 0.09

0.5810.40(0.37]0.360.34{0.32|0.31{0.31|0.300.29|0.28 | 0.27 [0.27|0.26 | 0.25|0.23 | 0.20 | 0.18 [ 0.12 | 0.09

0.5810.40(0.37]0.35|0.33{0.32|0.31{0.30{0.29(0.28 | 0.28 | 0.27 [ 0.26 | 0.25 | 0.24 | 0.22 { 0.20 | 0.17 [ 0.11 | 0.08

0.5810.39(0.37]0.35|0.33{0.310.31{0.30{0.29(0.280.27 |0.26 | 0.26 | 0.25 | 0.24 | 0.22 { 0.20 | 0.17 [ 0.11 | 0.08

0.5710.39(0.360.34|0.33{0.310.30{0.29|0.29 (0.28 | 0.27 | 0.26 | 0.25]0.25 [ 0.23|0.22 | 0.19 | 0.16 [ 0.11 | 0.08

0.5710.39(0.360.34|0.32{0.310.30{0.29|0.28 | 0.27 | 0.27 | 0.26 | 0.25] 0.24 | 0.23 | 0.21 [ 0.19 | 0.16 | 0.11 | 0.07

R ([N | S| W[N] -

0.5710.38(0.360.34|0.32{0.310.30{0.29]0.28 (0.27 | 0.26 | 0.26 | 0.25] 0.24 | 0.23|0.21 [ 0.19 | 0.16 | 0.10 | 0.07

o
=]

0.5710.38(0.360.340.32{0.300.29{0.29|0.28 | 0.27 | 0.26 | 0.25 [ 0.25]0.24 | 0.23 | 0.21 [ 0.19 | 0.16 | 0.10 | 0.07
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11 |0.56|0.38 [0.35/0.33(0.32[0.30 [ 0.29]0.28 | 0.28 [ 0.270.26 | 0.25 | 0.24 | 0.24 | 0.22 | 0.21 | 0.18 | 0.15 | 0.10 | 0.07
12 |0.56|0.38[0.35/0.33{0.31[0.30 | 0.29]0.28 | 0.27 | 0.26{ 0.26 | 0.25 | 0.24 | 0.23 | 0.22 | 0.20 | 0.18 | 0.15 | 0.10 | 0.06

13 |0.56|0.37[0.35/0.33|0.31 [0.30 [0.29]0.28 [ 0.27 | 0.26 | 0.25 | 0.25 | 0.24 | 0.23 | 0.22 [ 0.20 | 0.18 | 0.15 | 0.09 | 0.06

14 {0.55|0.370.34]0.33|0.31|0.29 [ 0.28 | 0.28 | 0.27 | 0.26 [ 0.25 | 0.24 | 0.24 | 0.23 | 0.21 | 0.20 | 0.17 | 0.15 | 0.09 | 0.06

15 0.550‘34 0.3210.300.29]0.28 |0.27|0.26 | 0.250.25 [ 0.24|0.23 | 0.22 [ 0.21 | 0.19 | 0.17 | 0.14 | 0.09 | 0.05

16 |0.54]0.36 [0.33|0.32{0.30 [ 0.28 | 0.27]0.26 | 0.26 [ 0.25 | 0.24 | 0.23 [ 0.23 | 0.22 | 0.20 | 0.19 | 0.16 | 0.14 | 0.08 | 0.05

17 |0.54]0.35[0.33/0.31{0.29 [ 0.28 | 0.27{0.26 | 0.25 | 0.24 | 0.23 | 0.23 | 0.22{0.21 | 0.20 | 0.18 | 0.16 | 0.13 | 0.07 | 0.04

18 |0.53(0.34[0.32|0.30(0.28 [ 0.26 | 0.26 | 0.25 | 0.24 [ 0.23 | 0.22 | 0.21 [ 0.21 | 0.20 | 0.19 | 0.17 | 0.15 | 0.12 | 0.06 | 0.03

19 |0.52]0.33]0.31/0.29]0.27 [ 0.26 | 0.25]0.24 | 0.23 [ 0.22]0.21 | 0.21 | 0.20| 0.19 | 0.18 | 0.16 | 0.14 | 0.11 | 0.05 | 0.02
1|97 7|6|6|6|6|6|5|5|5]|5|5]|5]|5|4|a4]a|3]|2

2 (26|24 |23 22|21 |20|19|19]18 18|17 |17 |17|16]| 15|14 |13|11] 8 |6

3 (3940|3937 36|34 (3333|3231 |30]30]29|28[27[25|23]20]14]11

4 | 46 |52 | 51 | 49 | 47 |45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 [ 37 | 35|33 |30 |26 18|13

5 49| 58 | 57 | 55|53 |51 |49 |48 | 47 | 46 | 45 | 44 | 43 | 41 | 39 | 37 | 33| 28 | 19 | 15

6 | 50|61 |60 |58 55|54 |52|51 (5048 |47 |46 |45 |44 | 42|39 |35]|30]20]15

7 | 51|63 |63 |61 58565553 (52|51 |49 |48 |47 |46 |43 |41 3631|2115

8 [ 52|66 | 65|63 |61 |59 |57 |55]|54|53]|52|50]|49|48 |45 |42|38]32]21]16

RatioR | 9 | 53 | 68 | 68 | 66 | 63 | 61 | 59 | 58 | 56 | 55 | 53 [ 52 | 51 |49 |47 |44 |39 33| 2216
polyAtail| 10 | 54 | 71 | 71 | 69 | 66 | 64 | 62 | 61 | 59 | 58 | 56 | 55 | 54 | 52 | 49 | 46 | 41 | 35 | 23 | 17
only Ty1 5676 |76 | 74 |70 [ 68 | 66 | 65 | 63 | 62 | 60 | 59 [ 57 [ 55 [ 53 | 49 [ 44 [ 37 [ 24 | 17
12|58 |81 [ 8 [ 80 | 76 | 74 | 72 | 70 | 68 | 67 | 65 | 64 | 62 | 60 | 57 | 53 | 47 | 40 | 26 | 18

13|60 | 89 [ 90 | 88 | 84 [ 82 |80 | 77 | 76 | 74 | 72 | 71 | 69 | 67 | 63 | 59 | 52 | 44 | 28 | 20

14 | 63 | 98 [101 | 98 | 95 | 92 [ 90 | 87 | 85 | 83 [ 81 |80 | 78 | 75 | 72 | 66 | 59 | 50 | 31 | 22

15| 65 | 109 [ 113 [ 111 | 107 | 104 [ 101 | 98 | 96 | 94 | 92 | 90 | 88 | 85 | 81 | 75 | 66 | 56 | 35 | 25

16 | 68 | 120 127 | 125 | 121 | 118 [ 115 | 112 | 109 | 107 [ 104 | 103 | 100 | 97 | 92 | 85 | 75 | 63 | 38 | 26

17 | 70 | 138 | 149 | 147 | 142 | 140 | 136 | 133 | 130 | 127 | 125 | 123 [ 120 | 116 | 110 [ 102 | 90 | 75 | 44 | 30

18 | 71 | 148 [ 162 | 162 | 157 | 154 | 150 | 146 | 143 | 140 | 137 | 136 | 133 | 128 | 122 [ 112 | 97 | 81 | 44 | 26

The decisions made to determine sequence orientation are summarized in table 3. Inspection of the UCSC

genome alignments revealed that only about 52% and 44% of the database sequences for human and mouse

respectively contain a splicing site. The other sequences may represent single exons (e.g. an unspliced sequence)

or use alternative donor and acceptor sites [19]. In these cases we attempt to determine the orientation of the

sequence from information provided by the polyadenylation signal and tail (only 4% and 2% for human and

mouse sequences respectively). All sequences that cannot be oriented are assigned to the category of

‘unoriented’ sequences.

Table 3. The number and percentage of sequences that are oriented by the different criteria in our algorithm.

Number of sequences

Number of sequences

Criteria
(H. sapiens) (M. musculus)
4,069,141 2,054,604
Presence of exon-intron splice site

(52.4%) (44.2%)
316,094 78,747

3'-end sequence label OR mRNA/RefSeq sequence polyA + signal
(4.1%) (1.7%)
47,627 22,195

polyA + signal
5'-end, random primed sequence label or label (0.6%) (0.5%)

unknown 4,833 6,890
polyA

(0.11%) (0.11%)
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3. Construction of primary transcriptional units. Overlapping sequences on the same strand and
overlapping sequences in the “unoriented” category are clustered to form primary transcriptional units. We
consider sequences overlapping if they share a genomic region between the start and stop position of their
respective alignments, i.e., we do not require exon overlap or sharing of splice sites. Requiring exon overlap
would, in principle, allow the detection of nested genes on the same strand but only few of these nested genes
exist [28]. Moreover, requiring overlap in our algorithm resulted in many ‘nested’ transcriptional units that were
artefacts caused by small EST sequences that did not have exon overlap with their neighbouring sequences. To
reduce the computational complexity we therefore did not require exon overlap. This step of the algorithm
results in transcriptional units, which contains all spliced and unspliced sequences for a specific gene including

transcripts variants.

4. Identification and removal of hybrid clusters. Due to the presence of sequence and alignment artifacts the
set of primary transcriptional units contain erroneous hybrid clusters that include sequences from two or more
neighboring genes, which were linked by, for example, a genomic DNA or a chimeric sequence [29]. To
identify and resolve hybrid clusters we first select all clusters that contain at least 25 sequences in order to have
sufficient experimental evidence to confidently resolve the neighboring genes (smaller clusters are retained but
not subjected to this step). Subsequently, the co-occurrence of every exon pair represented by the sequences of a
transcriptional unit is counted. The sequence(s) in which the pair consisting of the first and last exon has a co-
occurrence score smaller than 1 + (cluster size / 500) are removed and the remaining sequences are re-clustered
to obtain the new transcriptional units. This last threshold was determined empirically from manual inspection

of a test set of transcriptional units.

5. Identification of reliable clusters. The transcriptional units that result from the previous four steps of our
algorithm may still contain sequences that align to multiple positions on the genome. This may be caused by
incorrect BLAT alignments, the presence of repeat regions, the presence of pseudo-genes, and highly similar
gene family members. To account for these situations and to obtain a set of reliable clusters we only retain the
units that contain at least one RefSeq/mRNA sequence that maps on a single location or units that contain at
least two ESTs which map on a single location and that cover at least 25% of the total exon length of the cluster
to ensure that these ESTs really correspond to gene represented by the transcriptional unit. The first condition
ensures the removal of transcriptional units that only contain sequences that map on multiple positions and of
which the location is therefore uncertain. The second condition avoids the inclusion of multi-mapping units that
would not be removed due to relatively small, and therefore possibly erroneous, alignment of an EST. However,
to avoid the loss of transcriptional units that align to multiple positions but have an exon-intron structure for at
least one location and, therefore, are likely to represent true genes, we retain all units that contain at least one
spliced RefSeq/mRNA or two spliced ESTs that cover at least 25% over the total exon length in the alignment.
This allows distinguishing between true genes and processed pseudogenes. Of the 389,117 human clusters that
result from step 4 and 5 33,007 are classified as reliable (for mouse these numbers are respectively 226,059 and

27,792).
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6. Assignment of transcriptional unit names. In this last step we assign, if possible, gene names (Gene ID’s
and symbols) to each transcriptional unit on basis of the accession codes of the sequences. For this step we use
the Entrez “Gene” database [30]. From the 33,007 human and 27,792 mouse transcriptional units we could
uniquely link 18,082 human and 20,151 mouse units to one Gene identifier. 8§96 human and 720 mouse units
are linked to multiple entries of the Gene database. In this situation multiple names are assigned to a
transcriptional unit. A large number of units (14,029 and 6,921 for human and mouse respectively) could not be
linked to the Gene database. In this case we annotate the clusters either as “unknown” if the unit contains a

mRNA or RefSeq sequence, or as “EST” when the unit only consists of ESTs.

7.3.2 Linking transcriptional units from different organisms

In several of our applications we require the linkage of transcriptional units for different organisms. Therefore,
we identified orthologous relationships between the transcriptional units of all fifteen analyzed species.
Orthologous genes were identified by using the Best Bidirectional Hit method, which is proven to be stringent
and reliable [31]. Briefly, we first created FASTA files of all consensus sequences from each transcriptional unit
for each species. Secondly, we performed all-against-all sequence comparisons between each pair of FASTA
files. We used the BLAST?2 algorithm of the Biofacet package (http://www.gene-it.com) for the sequence
comparisons with default parameters. Finally, we checked for best reciprocal hits between genes from each
species pair resulting in 451,537 orthologous relationships for all 15 species pairs (see table S2 in the

supplementary information).

7.4 Implementation

The algorithms used to generate the transcriptional units were developed in Java and SQL. We used the
PostgreSQL 7.4 database (http://www.postgresql.org) for our application. The sets of transcriptional units are
available through our web-server (http://bioinfo.amc.uva.nl/HTMseq). Transcriptional View [18] can also be

accessed through the web-site (http://bioinfo.amc.uva.nl/human-genetics/transcriptview).

7.5 Results

We constructed and linked transcriptional units for H. sapiens, M. musculus, R. norvegicus, D. melanogaster, D.
rerio, D. simulans, D. yakuba, A. gambiae, B. taurus, C. familiaris, C. elegans, G. gallus, M. domestica, P.
troglodytes, and T. nigroviridis. Here we only discuss the results obtained for the human and mouse sets. The
full set of transcriptional units is available from our web site and table S1 in the supplementary information

provides the overall statistics for the sets for the different organisms.

Using the UCSC genome database builds hgl8 and mm8 we derived a set of 33,007 reliable transcriptional units

for human and 27,792 transcriptional units for mouse respectively (table 4). The total number of transcriptional
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units for human and mouse reflects the number of transcriptional units prior to removal of units that map to
multiple locations (step 5 of our algorithm). The number of reliable transcriptional units much better reflects the
estimated number of human and mouse genes [32]. A large fraction of the transcriptional units contain a RefSeq
sequence or a well-defined mRNA. We also observe that only a minor fraction of the transcriptional units
contain two or more gene ID’s from the NCBI ‘Gene’ database. Figure 3 shows an example of a transcriptional
unit for the human phospholipase A2-activating protein gene (TU number: 315880 s1), which includes two
RefSeq sequences and a large number of EST sequences. The mapping of this transcriptional unit on the

genomic sequence clearly shows the structure of the gene.

Table 4. Overview of the transcriptional units obtained for H. sapiens (hgl8) and M. musculus (mmS8).

hg18 mm3
Total number of TU’s 389117 226059
) all 33007 27792
Number of reliable TU forward strand 16644 13950
reverse strand 16363 13842
Number of TU’s containing RefSeqs 16529 15869
Number of TU’s containing mRNA’s 22425 15869
Number of TU’s containing only EST’s 10419 4311
1 exon 5522 2393
2-4 exons 8840 8866
5-9 exons 7124 6891
10-24 exons 8405 7668
>=125 exons 3116 1974
1 sequence 922 801
2-9 sequences 13452 10624
10-99 sequences 10045 10779
100-999 sequences 7955 5423
1000-9999 sequences 618 163
>= 10000 sequences 15 2
1 gene ID’s 18082 20151
2 gene ID’s 700 604
3-5 gene ID’s 169 90
>=6 gene ID’s 27 26
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Figure 3. Transcriptional unit for the phospholipase A2-activating protein gene. This transcriptional unit contains two RefSeq sequences

and a large number of ESTs. The exon-intron structure is clearly visible.

7.5.1 Cluster size distribution

Table 5 and figure 4 show the distribution of clusters sizes for the human transcriptional units, UniGene,

ECgene and AceView. Note that we only included ECgene clusters from the most reliable class A (34,973

clusters; see [10,15] for details). Clearly, we generate the fewest sequence clusters (33,007), which closest

approximates the estimated number of 25,947 human genes [32]. The number of clusters generated by UniGene

(83,896) largely exceeds the expected number of human genes, which is caused by the large number of singleton

clusters that contain only one sequence. Compared with ECgene and AceView, both the Transcriptional Units

and UniGene contain more clusters with a (very) large number of sequences.

Table 5. Comparison of human sequence clusters represented by Transcriptional Units (based on hgl8), UniGene (build 196), ECgene

(based on hg18 build 1, only high confidence clusters) and ACEview (based on human hgl7, only high confidence (main) clusters).

Min Max TU UniGene Ecgene AceView
32769 65536 1 1 1 0
16385 32768 3 6 2 0

8193 16384 19 22 18 8
4097 8192 48 62 37 44

2049 4096 146 233 136 152

1025 2048 391 739 433 518

513 1024 1024 2141 1395 1762

257 512 2217 4326 3291 3702

129 256 3438 4268 4514 4059
65 128 3430 3376 4084 3104
33 64 2893 3150 3706 2879
17 32 2983 3436 3978 3287
9 15 2514 4061 3610 3476
5 8 3226 5367 4311 5016
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Figure 4. Distribution of cluster sizes for Transcriptional Units and clusters generated by UniGene, ECgene and ACEview. The overall

distributions are similar but UniGene generates a large number of singleton clusters.

7.5.2 Hybrid transcriptional units

We also analyzed the number of hybrid transcriptional units, i.e. clusters containing non-overlapping full-length
transcripts, and compared these to the number of hybrid clusters obtained with ECgene and AceView. UniGene
could not be included in this comparison because the sequence alignments on which UniGene is based and

which are required for this analysis were not available.

Table 6. Number of hybrid transcriptional units (based on hgl8), ECgene (based on hgl8 build 1, only high confidence clusters) and

AceView (based on human hgl7, only high confidence (main) clusters

Category TU ECgene Aceview
# clusters % # clusters % # clusters %

All 33,007 100.00 47,769 100.00 52,935 100.00

>= ] refseq/mRNA 22,588 68.43 24,168 50.59 26,651 50.35

>= 2 refseq/mRNA 18,440 55.87 19,050 39.88 19,802 37.41

>=2 refseq/mRNA with > 2.5 Mbp gap 0 0.00 0 0.00 0 0.00

>=2 refseq/mRNA with > 2.0 Mbp gap 0 0.00 1 0.00 0 0.00

>=2 refseq/mRNA with > 1.5 Mbp gap 2 0.01 2 0.00 0 0.00

>=2 refseq/mRNA with > 1.0 Mbp gap 5 0.02 10 0.02 0 0.00

>=2 refseq/mRNA with > 0.5 Mbp gap 41 0.12 33 0.07 0 0.00
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>=2 refseq/mRNA with > 0.25 Mbp gap 154 0.47 96 0.20 0 0.00
>=2 refseq/mRNA with > 0.10 Mbp gap 573 1.74 351 0.73 0 0.00
>=2 refseq/mRNA with > 0.05 Mbp gap 1089 3.30 677 1.42 0 0.00
>=2 refseq/mRNA with > 0.025 Mbp gap 1759 5.33 1134 237 0 0.00
>=2 refseq/mRNA with > 0.010 Mbp gap 2627 7.96 1706 3.57 1 0.00

>=2 refseq/mRNA with > 0 Mbp gap 4709 14.27 2676 5.60 299 0.56

Table 6 gives the total number of clusters with at least one full-length transcript and clusters that contain at least
two full-length transcripts. For this last category of clusters we determined the amount of separation between
these full-length transcripts. The number of hybrid cluster in our set of transcriptional units is roughly similar to
the number in ECgene. Our set has fewer hybrid clusters with a very large gap length (> 1 Mbp) whereas
ECgene contains fewer hybrid clusters with a gap length smaller than 10 Kbp. AceView contains very few

hybrids of any gap length perhaps due to specific manual inspection of these cases.

7.6 Discussion

The development of our algorithms to construct transcriptional units and the comparison of the transcriptional
units to clusters obtained with alternative methods demonstrate that this indeed is a very challenging problem.
The research presented here made clear that our algorithms do not provide the final solution for the construction
of sequence clusters and reveals some of the challenges that still have to be solved in the future. One problem
involves the parameterization of the algorithms that affects the final outcome. Some of our choices were made
ad hoc based on manual inspection of the result of the clustering. Hence, for many of the (interacting)
parameters the effect on the set of transcriptional units has not yet been systematically investigated. This
requires one or more objective criteria to judge the overall quality of the sequence clusters but this may be hard
to define. Alternatively, one could (semi) manually curate the many clusters obtained for many different
organisms. Obviously, this is laborious and inefficient and ultimately also requires objective criteria. During the
development of our algorithms we manually inspected many transcriptional units for their structure and validity
and changed the (parameterization of the) algorithm to further improve the quality of the sequence clusters. As
mentioned in the introduction, we use the set of transcriptional units in many of our applications, which also

allows the detection of errors and, subsequently, to improve the algorithms.

The overall procedure to construct transcriptional units is similar to the procedures taken by UniGene, AceView
and ECgene but many (details of the) steps in our approach differ from these alternative approaches. Obviously,
small changes in the algorithms, lead to differences in outcome with respect to number of clusters, cluster sizes,
ability to remove hybrid and pseudo-gene clusters and the number of erroneous clusters in general. For example,
Figure 5a shows an example in which our approach was able to generate two separate clusters for FKBP11 and
ARF3 genes, while UniGene generated a hybrid cluster containing both genes. Figure 5b shows an example in
which UniGene was able to generate two correct clusters for the SF3A2 and AMH genes while our approach

resulted in the shown hybrid transcriptional unit. A precise comparison between the different sets of sequence
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clusters is difficult and would require a detailed comparison of the algorithms, which is not possible due to lack

of detailed documentation, the unavailability of the software or sequence alignments.
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Figure 5. Example hybrid clusters from UniGene and the transcriptional units. (a) Two transcriptional units for the FK506 binding protein

11, 19 kDa gene (FKBP11; TU=70186_sl) and ADP-ribosylation factor 3 gene (ARF3; TU=70186_s3). UniGene generates a single

erroneous cluster (Hs.119177) that includes both genes. (b) One erroneous transcriptional unit (TU number: 144970 s1) that contains both

the splicing factor 3a, subunit 2 (SF3A2) and anti-Mullerian hormone (AMH) gene. UniGene correctly generated two separate clusters for

these genes (SF3A2 is represented by Hs.115232 & Hs.501353; AMH is represented by Hs.112432).

Another issue concerns the parameterization of the orientation algorithms, which may depend on the organism

to which they are applied. There is evidence that different organisms use the canonical polyadenylation signals

with different frequencies [21,22-26]. Currently, we optimized the parameterization for human and apply the
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resulting orientation rules to other organisms assuming that this does not affect the final orientation too much. In
addition, from table 3 it was clear that the use of polyadenylation information could not contribute significantly
to the orientation of the large number of sequences that did not contain and exon-intron boundary. However, in

the ideal situation we would need to derive a set of orientation rules for each organism separately.

It is clear that further work needs to be done to improve sequence clustering algorithms, which seems justified

given the many applications in which these clusters are used.

7.7 Supplementary data

The supplementary tables belonging to this article can be found at http://www.cmbi.ru.nl/~timhulse/trscrunits.
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General discussion

The introduction of this thesis gives an impression of the growing importance of genomics in general and
orthology in particular, and shows how the field of genomics can be connected to the fields of drug discovery
and toxicology. The most promising aspect of this connection lies in the genomics-based discovery of
biomarkers: characteristics that are objectively measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacological responses to a therapeutic intervention [1]. However, the
application of genomics in drug discovery is not an easy one, and has still not yielded the great results it was
expected to give a few years ago. In this thesis we try to help solving the problems encountered when applying
genomics methods in drug discovery. The first chapters contain fundamental studies concerning orthology,
sequence comparisons and phylogenetic patterns, designed to form a guideline for the application of these
methods. The other chapters show the application of orthology in several fields: immunology, evolutionary
biology and transcriptomics. In this discussion the conclusions from all these chapters will be dealt with, and we
will discuss the upcoming field of pharmacophylogenomics [2], the intersection of pharmaceutics and

phylogenomics: can it really shorten the drug discovery pipeline?

Before we can use genomics and orthology in the drug discovery pipeline, it is important to look at their
fundamental aspects. Concerning orthology, numerous methods for ortholog identification exist, and we chose
that our first step should be to test some of these methods on how well they perform in terms of functional
similarity [3]. The assumption that orthologs have a highly similar function is important because it forms the
basis for the main goal of ortholog identification: the transfer of functional annotation of proteins from one
species to the other. However, numerous cases have been described where orthologs have, in fact, different
functions. The correct definition of orthology is ‘the evolutionary relationship between homologous genes
whose independent evolution reflects a speciation event’ [4]. Usually these proteins maintain a similar function,
but this is not always the case. This discrepancy between the official definition of orthology and the way it is
used (functional equivalence), can give problems within the field of pharmacophylogenomics, because we are
mainly interested in the functional equivalence and not directly in the evolutionary origin of the studied genes or
proteins. This is reflected in the fact that only some of the benchmarked ortholog identification methods really
use evolutionary methods such as phylogenetic trees [5], whereas most methods just use sequence comparisons
[6, 7]. Moreover, the quality of an ortholog determination method depends not only on the method itself, but
also on its settings and other programs used in the process. Using for example either the heuristic method
BLAST [8] or the Smith-Waterman implementation of ParAlign [9] as the sequence comparison program within
the ortholog identification process, can give quite different results [10]. The same holds for the multiple
sequence alignment algorithm that is used if a ortholog identification method requires multiple alignments and
phylogenetic trees: ClustalW [11], MUSCLE [12], or any other algorithm can give very different multiple
alignments, resulting in different phylogenetic trees and different orthology assignments. One of the applications
of orthologous relationships lies in the creation of orthologous groups and the subsequent creation of
phylogenetic patterns [13], which display the presence or absence of certain genes over a set of species [14].
These patterns can be used, for example, to cluster genes that occur in the same species or taxons. These genes
are likely to have a similar function or to be involved in the same biological process. Phylogenetic patterns can

also be used to study gene families and their expansions or deletions over time, which can be very useful in drug
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discovery because interspecies differences in drug response could be explained by looking at expansions or

deletions of certain genes in the pathway.

The combination of genomics and pharmacology is usually referred to as ‘pharmacogenomics’. As defined a
few years ago [15]: “pharmacogenomics refers to the general study of all of the many different genes that
determine drug behavior”. However, the term is sometimes mixed up with ‘pharmacogenetics’: the study of
inherited differences (variation) in drug metabolism and response. The usage of orthology to find solutions for
drug discovery problems is part of pharmacogenomics, but is not part of pharmacogenetics. Orthology can only
provide answers for interspecies differences, not interhuman differences. The main application of orthology in
drug discovery lies in the assumption that differences in drug response between human and model organisms
can be explained by looking at the orthologous proteins between these species. In this thesis we tried to show
that single proteins, and even protein families or complete protein pathways, can be linked cross-species by
identifying orthologous relationships. The study of the evolution of the immune system from model organisms
(chicken, rat, mouse, etc.) to man, described in chapter 5, is a good example of this. For drug discovery the
interspecies mapping of protein pathways is of specific interest. A different response to a certain drug in man
and in a model organism can be elucidated by mapping the organisms’ pathways onto each other. This could
increase the predictive value of studies in animal models drastically. However, studies like this need highly
accurate and reliable orthology information. Moreover, other factors like alternative transcripts, expression
levels and three-dimensional structure could be part of the solution. An example of this is the (unpublished)
study we did on the thrombin/trypsin inhibition pathway [16]. If thrombin inhibitors are administred to rats, side
effects occur because these inhibitors also act on the trypsin inhibition pathway. The cholecystokinine (CCK)
levels in the rats rise, which overstimulates the pancreas, leading to pancreatic tumors. In mouse these CCK
levels rise much less, and in man these levels do not rise at all. This makes testing of drugs related to this
pathway, such as Exanta/ximelagatran [17], rather difficult. We tried to explain the interspecies differences by
looking at the (numbers of) orthologs in the trypsin inhibition pathway. Although we found some differences in
the pathway over these three species, these could not be the only reason for the differences in CCK response. A
next step should be the use of expression data and structural data, an approach that has been useful in recent
studies [18-20]. All in all, in order to provide an answer to pharmacogenomics questions, a whole range of

genomics data might be needed, instead of just orthology data.

Orthology has a wide range of applications: immunology studies [21], evolutionary studies [22] and
transcriptomics studies [23] all benefit from the use of orthologous relationships. However, application of
orthology alone is not likely to answer many research questions. As is shown in especially the immune system
and trypsin inhibition studies, a wide range of functional genomics data needs to be gathered to shed light on
complex systems such as pathways in the field of drug discovery. This makes the field of
pharmacophylogenomics a difficult one, but with the ever growing availability of genomics data it will certainly
have its benefits on the long term. This especially holds for the availability of more genomics data from existing
model organisms such as dog, macaque and goat. In the future, the completeness and higher reliability of
genomics data will enable researchers to perform studies like in this thesis in more detail and with more

accuracy. The best future results will be obtained when the knowledge acquired from this thesis is combined

140



General discussion

with expression data and structural data. Finally, findings should be directly incorporated in clinical studies, as

seen in translational medicine [24]. This will fasten the drug discovery pipeline significantly.
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List of abbreviations

Ag Anopheles gambiae

Am Apis mellifera

AP Average Precision

BBH Best Bidirectional Hit

bfz Biofacet with Z-score
BLAST Basic Local Alignment Tool
ble BLAST with e-value

BRH Best Reciprocal Hit
BLOSUM  Blocks Substitution Matrix
Bt Bos taurus

Ce Caenorhabditis elegans
Cf Canis familiaris

Ci Ciona intestinalis

CluSTr Clusters of SWISS-PROT and TrEMBL

CMBI Center for Molecular and Biomolecular Informatics
COG Clusters of Orthologous Groups

CVE Coverage Versus Error

DIP Database of Interacting Proteins

Dm Drosophila melanogaster

Dr Danio rerio

EMBL European Molecular Biology Laboratory
EPPS Extended Phylogenetic Pattern Search
EST Expressed Sequence Tag

fae FASTA with e-value

FFP First False Positive

Gg Gallus gallus

GO Gene Ontology

HGNC HUGO Gene Nomenclature Committee
Hs Homo sapiens

HTM Human Transcriptome Map

HTML HyperText Markup Language

HUGO Human Genome Organisation

INP InParanoid

INPB InParanoid, Best scoring pair

KOG euKaryotic Orthologous Groups

KOGB euKaryotic Orthologous Groups, Best scoring pair
MBRH Multiple Best Reciprocal Hit

MCL Markov Cluster Algorithm
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MCLB
Md

Mmul
Mmus
mRNA
MTM
Mu
MUSCLE
MySQL
NCBI
NTP
pae
pce
PGT
PhIG
PHYLIP
PPS

Pt

RHS
Rn
ROC

Sc
SCOP
SNOMED
SNP
SQL
sse

SW

Tn

Tr
UBRH
Xt

Z1H

Markov Cluster Algorithm, Best scoring pair
Monodelphis domestica

Mus musculus

Macaca mulatta

Mus musculus

Messenger RiboNucleic Acid

Mouse Transcriptome Map

Macaca mulatta

MUItiple Sequence Comparison by Log-Expectation

My Structured Query Language

National Center for Biotechnology Information

Number of True Positives

ParAlign with e-value

Paracel with e-value

PhyloGenetic Tree
Phylogenetically Inferred Group
Phylogeny Inference Package
Phylogenetic Pattern Search

Pan troglodytes

Reciprocal Hit based on Synteny information
Rattus norvegicus

Receiver Operating Characteristic
Saccharomyces cerevisiae
Structural Classification of Proteins
Systematized Nomenclature Of Medicine
Single Nucleotide Polymorphism
Structured Query Language
SSEARCH with e-value
Smith-Waterman

Tetraodon nigroviridis

Takifugu rubripes

Unique Best Reciprocal Hit
Xenopus tropicalis

Z 1 Hundred

List of abbreviations
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Chapter 1, figure 1. Popularity of -omics search terms in the PubMed database

The percentage of articles (titles + abstracts) in the PubMed database that contain the words ‘genomics’ (black line), ‘transcriptomics’
(purple line), ‘proteomics’ (blue line), ‘metabolomics’ (green line), ‘systems biology’ (red line) or ‘pharmacogenomics’ (orange line).
Horizontal axis: year. Vertical axis: number of articles that contain that specific search term, divided by the total number of articles

published in that year (in %).

146



Color figures

0.80
(a)

[F)]
@
& 0.60
e
py @ BBH Hs-Mm
O
= INP Hs-Mm
g 040 D INPB Hs-Mm
5 ¢ @ KOG Hs-Mm
s A KOGB Hs-Mm
£ 020 MCL Hs-Mm
c \'\ MCLB Hs-Mm
= ® @ PGT Hs-Mm
E 0.00 Z1H Hs-Mm
g
3 — Trendline
&
5 -0.20
>
I

-0.40

3000 4000 6000 7000 8000
Average proteome size
0.48
(b)

W
L D46
=
o
o
§ 0.44
W
E ® BBH Hs-Ce
2 0.42 INP Hs-Ce
o INPB Hs-Ce
4= ® KOG Hs-Ce
_E 0.40 1 A KOGB Hs-Ce
B | | ¢ —— | MCL Hs-Ce
o [ MCLB Hs-Ce
§ 0.38 ® ¢ | ®PGTHsCe
o Z1H Hs-Ce
o
g 0.36 — Trendline
<

034 T T T T T T T T T T

250 300 350 400 450 500 550 600 650 700 750 800

Chapter 2, figure 1. Correlation in expression profiles

Average proteome size

Correlation in expression patterns between the (a) human-mouse (Hs-Mm) and (b) human-worm (Hs-Ce) orthologous pairs from the

benchmarked methods versus the average proteome size. Vertical error bars show the standard deviation from the average correlation

coefficient. The trendline shown is a linear regression trendline. The methods having a fourth letter 'B' behind the method name, shown as

squares in the graph, are group orthology methods in which only the best scoring pairs are taken into account. Ce, Caenorhabditis elegans;

Hs, Homo sapiens; Mm, Mus musculus.
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Chapter 2, figure 2. Equal InterPro accession number
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Conservation of InterPro accession number between the (a) human-mouse (Hs-Mm) and (b) human-worm (Hs-Ce) orthologous pairs from

the benchmarked methods versus the average proteome size. Ce, Caenorhabditis elegans; Hs, Homo sapiens; Mm, Mus musculus.
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Conservation of co-expression from human-human gene pairs to orthologous (a) mouse-mouse and (b) worm-worm gene pairs from the

benchmarked methods versus the average proteome size. Ce, Caenorhabditis elegans; Hs, Homo sapiens; Mm, Mus musculus.
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Chapter 2, figure 4. Conservation of gene order
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Conservation of gene order from human-human gene pairs to orthologous (a) mouse-mouse and (b) worm-worm gene pairs from the

benchmarked methods versus the average proteome size. Ce, Caenorhabditis elegans; Hs, Homo sapiens; Mm, Mus musculus.
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Chapter 2, figure 5. Conservation of protein-protein interaction

Conservation of protein-protein interaction from human-human protein pairs to orthologous (a) mouse-mouse and (b) worm-worm protein

pairs from the benchmarked methods versus the average proteome size. Ce, Caenorhabditis elegans; Hs, Homo sapiens; Mm, Mus

musculus.
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Chapter 2, figure 6. Overall scoring graph
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Overall scoring graph, created by adding up all normalized benchmarking scores per ortholog identification method. X-axis, the several

ortholog identification methods, sorted by average proteome size or number of protein pairs; Y-axis, the sum of all five benchmarking

scores per ortholog identification method. Red, correlation of expression profiles; green, equal InterPro accession numbers; blue,

conservation of co-expression; orange, conservation of gene order; purple, conservation of protein-protein interaction. (a) Human-mouse

(Hs-Mm). (b) Human-worm (Hs-Ce).
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Chapter 3, figure 1. The mean Receiver Operating Characteristic scores for ten different ASTRAL SCOP sets

The maximal structural identity percentage of each set increases from the left to the right, from 10% to 95%. Red bars: mean ROCs, scores
calculated using the Paracel Smith-Waterman algorithm. Blue bars: mean ROCs, scores calculated using the Biofacet Smith-Waterman
algorithm with Z-score statistics. Green bars: mean ROCs, scores calculated using the BLAST algorithm. Yellow bars: mean ROCs, scores
calculated using the FASTA algorithm. Purple bars: mean ROCs, scores calculated using the SSEARCH algorithm. Orange bars: mean
ROCs scores calculated using the ParAlign Smith-Waterman algorithm.
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Chapter 3, figure 2. (a) Coverage versus error plot for the ASTRAL SCOP PDBO010 set. (b) Coverage versus error plot for the ASTRAL
SCOP PDBO035 set. (¢) Coverage versus error plot for the ASTRAL SCOP PDB095 set.

Red line: calculated using the Paracel Smith-Waterman algorithm. Blue line: calculated using the Biofacet Smith-Waterman algorithm with
Z-score statistics. Green line: calculated using the BLAST algorithm. Yellow line: calculated using the FASTA algorithm. Purple line:
calculated using the SSEARCH algorithm. Orange line: calculated using the ParAlign Smith-Waterman algorithm.
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Chapter 3, figure 3. The average precision values for ten different ASTRAL SCOP sets

The maximal structural identity percentage of each set increases from the left to the right, from 10% to 95%. Red bars: mean AP values
calculated using the Paracel Smith-Waterman algorithm. Blue bars: mean AP values calculated using the Biofacet Smith-Waterman
algorithm with Z-score statistics. Green bars: mean AP values calculated using the BLAST algorithm. Yellow bars: mean AP values
calculated using the FASTA algorithm. Purple bars: mean AP values calculated using the SSEARCH algorithm. Orange bars: mean AP

values calculated using the ParAlign Smith-Waterman algorithm.
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Chapter 3, figure 6. ROCs) and mean AP values for proteins larger than 500 aa

The ROCs scores are shown at the left half, the mean AP values on the right half. Red bars: calculated using the Paracel Smith-Waterman
algorithm. Blue bars: calculated using the Biofacet Smith-Waterman algorithm with Z-score statistics. Green bars: calculated using the
BLAST algorithm. Yellow bars: calculated using the FASTA algorithm. Purple bars: calculated using the SSEARCH algorithm. Orange

bars: calculated using the ParAlign Smith-Waterman algorithm.
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Chapter 3, figure 7. ROCs) and mean AP values for the SW scores of three different SW algorithms.
The ROCs scores are shown at the left half, the mean AP values on the right half. Blue bars: calculated using the Biofacet Smith-Waterman
algorithm with Z-score statistics. Purple bars: calculated using the SSEARCH algorithm. Orange bars: calculated using the ParAlign Smith-

Waterman algorithm.
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Chapter 4, figure 3. The PhyloPat web interface (Pattern Search tab)

The web interface has the menu on the left and the input/results page on the right. On the pattern search page, the user can generate a

phylogenetic pattern by clicking a radio button for each species. 1 = present, * = present/absent, 0 = absent. The buttons directly below put

all 21 species on the corresponding mode. MySQL regular expressions offer the possibility of advanced querying. The user can choose to

show any number of lineages and choose the output format: HTML, Excel or plain text.
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Chapter 5, figure 3. Venn diagram of the numbers of phylogenetic lineages linked to specific immunologic categories

Venn diagram of the numbers of phylogenetic lineages linked to ‘Innate Immunity’ (red), ‘Adaptive Immunity’ (green) and ‘Immune

Pathway or Signalling’ (blue) and combinations of these three categories. Each surface is proportional to the number it represents, except for

the overlap between all three categories.
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Chapter 5, figure 4. Conservation of gene order for phylogenetic lineage IP377 (IFNA)

Conservation of gene order for phylogenetic lineage IP377 or PP069187, which consists of several members of the IFNA (interferon alpha)
family, for seven species: H. sapiens, P. troglodytes, M. mulatta, M. musculus, R. norvegicus, C. familiaris and M. domestica. For each
species, the most central IFNA gene is shown next to its twenty surrounding genes on the chromosome. Black: gene belonging to the IFNA
phylogenetic lineage. Color: gene belonging to phylogenetic lineage with two or more members in this figure. Grey: belonging to
phylogenetic lineages with only one member in this figure (‘singleton’). Only the final five/six characters of each Ensembl ID or PPID are

shown.
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Chapter 5, figure 5. The toll-like receptor pathway
The pathway ‘Toll-like receptor (TLR) ligands and common TLR signalling pathway leading to cell proinflammatory response’ from the
GeneGo MetaCore™ [28] application.
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Glossary

An abnormal, harmful, undesired and/or unintended side-effect, although not
necessarily unexpected, which is obtained as a result of a therapy or other medical
intervention, such as drug/chemotherapy, physical therapy, surgery, medical
procedure, use of a medical device, etc.

A molecule that contains both amine and carboxylic acid functional groups. They are
the basic structural building units of proteins. They form short polymer chains called
peptides or polypeptides which in turn form structures called proteins.

Two proteins or genes are said to be analogous if they perform the same or similar
function by a similar mechanism. These similar mechanisms may have evolved
through different pathways, a process known as convergent evolution. The concept of
analogy is contrasted with that of homology.

The connection of a previously unknown sequence representation of genetic material
with information relating position to intron-exon-boundaries, regulatory sequences,
repeats, gene names and protein products, etc.. This annotation is usually stored in
predefined fields in biological databases, especially sequence databases.

A virus that infects bacteria. The term is commonly used in its shortened form,
phage.

Basic Local Alignment Search Tool. An algorithm for comparing biological
sequences, such as the amino-acid sequences of different proteins or the DNA
sequences.

The study of relationships between the genomes of different species or strains.
Comparative genomics is an attempt to take advantage of the information provided
by the signatures of selection to understand the function and evolutionary processes
that act on genomes.

In medicine, biotechnology and pharmacology, drug discovery is the process by
which drugs are discovered and/or designed. The process of drug discovery involves
the identification of candidates, synthesis, characterization, screening, and assays for
therapeutic efficacy. Once a compound has shown its value in these tests, it will
begin the process of drug development prior to clinical trials.

A method for reducing the runtime of algorithms exhibiting the properties of
overlapping subproblems and optimal substructure.

An organism with a complex cell or cells, in which the genetic material is organized
into a membrane-bound nucleus or nuclei. Eukaryotes comprise animals, plants, and
fungi—which are mostly multicellular—as well as various other groups that are
collectively classified as protists (many of which are unicellular).

The process by which a gene's DNA sequence is converted into the structures and
functions of a cell. Gene expression is a multi-step process that begins with

transcription of DNA, which genes are made of, into messenger RNA. It is then
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Glossary

followed by post transcriptional modification and translation into a gene product,
followed by folding, post-translational modification and targeting.

A DNA and Protein sequence alignment software package first described (as FASTP)
by David J. Lipman and William R. Pearson in 1985. The original FASTP program
was designed for protein sequence similarity searching. FASTA, described in 1988,
added the ability to do DNA:DNA searches, translated protein:DNA searches and
provided a more sophisticated shuffling program for evaluating statistical
significance.

The whole hereditary information of an organism that is encoded in the DNA (or, for
some viruses, RNA). This includes both the genes and the non-coding sequences.

The study of an organism's genome and the use of the genes. It deals with the
systematic use of genome information, associated with other data, to provide answers
in biology, medicine, and industry.

Also known as seven transmembrane receptors, 7TM receptors, and heptahelical
receptors. A protein family of transmembrane receptors that transduce an
extracellular signal (ligand binding) into an intracellular signal (G protein activation).
The GPCRs are the largest protein family known, members of which are involved in
all types of stimulus-response pathways, from intercellular communication to
physiological senses.

The iron-containing oxygen-transport metalloprotein in the red cells of the blood in
mammals and other animals. Hemoglobin in vertebrates transports oxygen from the
lungs to the rest of the body, such as to the muscles, where it releases the oxygen
load. Hemoglobin also has a variety of other gas-transport and effect-modulation
duties, which vary from species to species, and which in invertebrates may be quite
diverse.

A DNA sequence found within genes that are involved in the regulation of
development (morphogenesis) of animals, fungi and plants. Genes that have a
homeobox are called homeobox genes and form the homeobox gene family.

Is used in reference to protein or DNA sequences, meaning that the given sequences
share a common ancestor. Sequence homology may also indicate common function.
A particular subgroup of homeobox genes, that are found in a special gene cluster,
the Hox cluster (also called Hox complex). Hox genes function in patterning the body
axis. Thus, by providing the identity of particular body regions, Hox genes determine
where limbs and other body segments will grow in a developing fetus or larva.

A group of cytokines that were first seen to be expressed by white blood cells
(leukocytes, hence the -leukin) as a means of communication (inter-). The name is
sort of a relic though; it has since been found that interleukins are produced by a wide
variety of bodily cells. The function of the immune system depends in a large part on
interleukins, and rare deficiencies of a number of them have been described, all

featuring autoimmune diseases or immune deficiency.
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Ligand

Model organism

Multiple seq. alignment

Nucleic acid

Nucleotide

Oligopresent genes
Omnipresent genes

Orthology

Paralogy

Pharmacogenomics

Phylogenetic tree

Phylogenomics

Polypresent genes
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An atom, ion, or molecule that generally donates one or more of its electrons through
a coordinate covalent bond to, or shares its electrons through a covalent bond with
one or more central atoms or ions.

A species that is extensively studied to understand particular biological phenomena,
with the expectation that discoveries made in the organism model will provide insight
into the workings of other organisms (e.g. humans). This is possible because
fundamental biological principles such as metabolic, regulatory, and developmental
pathways, and the genes that code for them, are conserved through evolution.

A sequence alignment of three or more biological sequences, generally protein,
DNA, or RNA. In general, the input set of query sequences are assumed to have an
evolutionary relationship by which they share a lineage and are descended from a
common ancestor. From the resulting MSA, sequence homology can be inferred and
phylogenetic analysis can be conducted to assess the sequences' shared evolutionary
origins.

A complex, high-molecular-weight biochemical macromolecule composed of
nucleotide chains that convey genetic information. The most common nucleic acids
are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Nucleic acids are
found in all living cells and viruses.

A chemical compound that consists of a heterocyclic base, a sugar, and one or more
phosphate groups. In the most common nucleotides the base is a derivative of purine
or pyrimidine, and the sugar is the pentose (five-carbon sugar) deoxyribose or ribose.

Genes that are present in only one or two species within a selected species set.

Genes that are present in all species within a selected species set.

Homologous sequences are orthologous if they were separated by a speciation event:
if a gene exists in a species, and that species diverges into two species, then the
copies of this gene in the resulting species are orthologous.

Homologous sequences are paralogous if they were separated by a gene duplication
event: if a gene in an organism is duplicated, then the two copies are paralogous.

The branch of pharmaceutics which deals with the influence of genetic variation on
drug response in patients by correlating gene expression or single-nucleotide
polymorphisms with a drug's efficacy or toxicity.

A phylogenetic tree is a tree showing the evolutionary interrelationships among
various species or other entities, such as genes or proteins, that are believed to have a
common ancestor. A hylogenetic tree is a form of a cladogram. In a phylogenetic
tree, each node with descendants represents the most recent common ancestor of the
descendants, and edge lengths correspond to time estimates.

A method of assigning a function to a gene based on its evolutionary history in a
Phylogenetic tree. Phylogenomics uses knowledge on the evolution of a gene to
improve function prediction.

Genes that are present in almost all species within a selected species set.
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Sequencing
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Substrate
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Transcription

Translation

Vertebrate
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Glossary

An organism without a cell nucleus (= karyon), or indeed any other membrane-bound
organelles, in most cases unicellular (in rare cases, multicellular).

The entire complement of proteins in a given biological organism or system at a
given time, i.e. the protein products of the genome.

A way of arranging DNA, RNA, or protein primary sequences to emphasize their
regions of similarity, which may indicate functional or evolutionary relationships
between the genes or proteins in the query. Sequences are typically written with their
characters (generally amino acids or nucleotides) in aligned columns that into which
gaps are inserted so that successive columns contain identical or similar characters.
The process of determining the nucleotide order of a given DNA fragment. Currently,
almost all DNA sequencing is performed using the chain termination method
developed by Frederick Sanger. This technique uses sequence-specific termination of
an DNA synthesis reaction using modified nucleotide substrates.

A well-known algorithm for performing local sequence alignment; that is, for
determining similar regions between two nucleotide or protein sequences.

A molecule upon which an enzyme acts. Enzymes catalyze chemical reactions
involving the substrate(s). The substrate binds with the enzyme's active site, and an
enzyme-substrate-complex is formed. The substrate is broken down into a product
and is released from the active site. The active site is now free to accept another
substrate molecule.

Type I transmembrane proteins that recognize pathogens and activate immune cell
responses as a key part of the innate immune system. In vertebrates, they can help
activate the adaptive immune system, linking innate and acquired immune responses.
The process through which a DNA sequence is enzymatically copied by an RNA
polymerase to produce a complementary RNA. Or, in other words, the transfer of
genetic information from DNA into RNA.

The second process of protein biosynthesis (part of the overall process of gene
expression). In translation, Messenger RNA (mRNA) is decoded to produce a
specific polypeptide according to the rules specified by the genetic code. Translation
is necessarily preceded by transcription.

A subphylum of chordates, specifically, those with backbones or spinal columns.
About 58,000 species of vertebrates have been described.

Homology that arises via horizontal gene transfer between unrelated species
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The current drug discovery pipeline can be regarded as slow and inefficient. The average time spent for the
complete process is around fourteen years, and the ‘attrition rate’, i.e. the ratio tested compounds / approved
drugs, is currently almost 99%. In this thesis, we discuss a pharmacophylogenomics approach to shorten and

improve this pipeline.

In chapter 1, we give an introduction to comparative genomics, drug discovery, and their intersection of
pharmacophylogenomics. It introduces chapters 2-4 as general orthology/genomics methodologies, and chapter

5-7 as applications of orthology in, respectively, immunology, evolutionary biology and transcriptomics.

The orthology benchmark described in chapter 2 uses the basic assumption that orthologs have a highly similar
function. This property is important because it forms the basis for the main goal of ortholog identification: the
transfer of functional annotation of proteins from one species to the other. We use functional genomics data as a
benchmark for a number of ortholog identification methods and we show that there is a trade-off between
sensitivity and selectivity of the several methods. This means that methods such as the best bidirectional hit
method, which only give a small number of orthologous pairs, are best in predicting functional similarities.
Methods such as COG (Clusters of Orthologous Groups) give a large number of orthologous pairs, but are not as
good as other methods in predicting functional similarities. We tried to combine the two factors of sensitivity
and selectivity into one score and concluded that the InParanoid method is the best ortholog identification

method.

The quality of an ortholog identification method depends not only on the method itself, but also on its settings
and other programs used in the process. The InParanoid program for example, needs as input a list of sequence
pairs together with their similarity scores, provided by a sequence comparison algorithm such as BLAST.
Chapter 3 shows us that BLAST could better be replaced by other sequence comparison algorithms: SSEARCH
or ParAlign. These methods are usually slower than BLAST, but for most large sequence comparison projects
time is not the limiting factor. Improvements could also be made by using different settings than the defaults, or
different statistical significance values. We recommend e-value and not z-score, because of its high accuracy

and calculation speed.

Chapter 4 shows how orthology information can be used to create phylogenetic patterns, which display the
presence or absence of certain genes over a set of species. They can be used, for example, to cluster genes that
occur in the same species or taxons. These genes are likely to have a similar function or to be involved in the
same biological process. They can also be used to study gene families and their expansions or deletions over
time. Another use lies in the study of anti-correlating patterns: genes that have exactly inversed patterns. These
genes might be completely different in function, but could also be analogous: performing the same function in
different species or taxons, without having a common ancestor. The PhyloPat tool is not only useful for

phylogenetic pattern querying; it offers the functionality for all kinds of evolutionary studies, and can be used
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for the annotation of proteins with unknown function. This functional annotation is one of the most important

direct applications of functional genomics.

The main application of orthology in drug discovery lies in the assumption that differences in drug response
between human and model organisms can be explained by looking at the orthologous proteins between these
species. In this thesis we tried to show that single proteins, and even protein families or complete protein
pathways, can be linked cross-species by identifying orthologous relationships. The study of the evolution of the
immune system from model organisms (chicken, rat, mouse, etc.) to man, described in chapter 5, is a good
example of this. For drug discovery the interspecies mapping of protein pathways is of specific interest. A
different response to a certain drug in man and in a model organism can be elucidated by mapping the
organisms’ pathways onto each other. This could increase the predictive value of studies in animal models
drastically. However, studies like this need highly accurate and reliable orthology information. Moreover, other
factors like alternative transcripts, expression levels and three-dimensional structure could be part of the
solution. All in all, in order to provide an answer to pharmacogenomics questions, a whole range of genomics

data might be needed, instead of just orthology data.

The concept of orthology has many applications, and not only in drug discovery. In chapter 6 we have shown
that it can be used for evolutionary studies, in this case the evolution of bidirectional gene pairs. Using Ensembl
orthologies we were able to map bidirectional (head-to-head) gene pairs from species A to gene pairs from
species B. In this way we connected gene pairs from eleven vertebrate species to each other. We found an
enrichment of head-to-head gene pairs with distance less than 600 bp in the human, chimpanzee, mouse, rat and
chicken genomes, and an enrichment of head-to-tail gene pairs in fish and Ciona. We concluded that this
indicates a transition from head-to-tail gene orientation in lower vertebrates to head-to-head orientation in
higher vertebrates. A study like this would not have been possible without complete and accurate orthology

information.

Another application of orthology is shown in chapter 7. Here we discussed the construction of transcriptional
units, i.e. groups of EST and mRNA sequences that actually belong to one single gene, for every organism in the
UCSC genome database. The human and mouse TU sets were mapped onto each other using ortholog
identification methods, enabling us to compare cross-species data. In the future, this methodology will be used
to map TU sets from more species. The quality of this mapping, and the conclusions drawn from it, are largely

dependent on the accuracy of the ortholog prediction.

Chapter 8 concludes this thesis with the statement that application of orthology alone is not likely to answer
many research questions: a wide range of functional genomics data needs to be gathered to shed light on
complex systems such as pathways in the field of drug discovery. However, the completeness and higher
reliability of future genomics data will enable researchers to perform studies like in this thesis in more detail and

with more accuracy. This thesis offers a good foundation for this future pharmacophylogenomics research.
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De huidige drug discovery pipeline kan worden beschouwd als langzaam en inefficiént. De gemiddelde
tijdsduur voor het complete proces ligt rond de veertien jaar, en de ‘attrition rate’, oftewel de ratio getestte
compounds / goedgekeurde medicijnen, is momenteel bijna 99%. In dit proefschrift bediscussiéren we een
pharmacophylogenomics aanpak om deze pipeline te verkorten en te verbeteren.

In hoofdstuk 1 geven we een inleiding op comparative genomics, drug discovery, en hun intersectie genaamd
pharmacophylogenomics. Het introduceert de hoofdstukken 2-4 als algemene orthologie/genomics
methodologieén, en hoofdstuk 5-7 als toepassingen van orthologie in respectievelijk immunologie, evolutionaire
biologie en transcriptomics.

De orthologie benchmark beschreven in hoofdstuk 2 gebruikt de basisveronderstelling dat orthologen een zeer
similaire functie hebben. Deze eigenschap is belangrijk omdat het de basis vormt voor het hoofddoel van
ortholoog-identificatie: het overbrengen van de functionele annotatie van eiwitten van de ene soort naar de
andere. We gebruiken functional genomics gegevens als een benchmark voor een aantal ortholoog-identificatie
methodes en we laten zien dat er een wisselwerking is tussen de sensitiviteit en selectiviteit van de verscheidene
methodes. Dit betekent dat methodes als de ‘best bidirectional hit’ methode, die slechts een klein aantal
orthologe paren geeft, het best zijn in het voorspellen van functionele similariteiten. Methodes als COG
(Clusters of Orthologous Groups) geven een groot aantal orthologe paren, maar zijn niet zo goed als andere
methodes in het voorspellen van functionele similariteiten. Wij hebben geprobeerd de twee factoren van
sensitiviteit en selectiviteit te combineren in één enkele score en hebben geconcludeerd dat de InParanoid
methode de beste ortholoog-identificatie methode is.

De kwaliteit van een ortholoog-identificatie methode hangt niet alleen af van de methode zelf, maar ook van zijn
instellingen en van andere programma’s die zijn gebruikt in het proces. Het InParanoid programma
bijvoorbeeld, gebruikt als input een lijst van sequentie-paren plus hun similariteitsscores, verschaft door een
sequentievergelijkings-algoritme zoals BLAST. Hoofdstuk 3 laat ons zien dat BLAST beter vervangen kan
worden door andere sequentievergelijkings-algoritmes: SSEARCH of ParAlign. Deze methodes zijn
gebruikelijk langzamer dan BLAST, maar voor de meeste grootschalige sequentievergelijkings-projecten is tijd
niet de limiterende factor. Verbeteringen kunnen ook worden verkregen door andere instellingen te gebruiken
dan de standaard instellingen, of andere statistische significantie waarden. Wij bevelen de e-value en niet de z-
score aan, vanwege zijn hogere nauwkeurigheid en berekeningssnelheid.

Hoofdstuk 4 toont aan hoe orthologie informatie kan worden gebruikt om phylogenetische patronen te creéren,
die de aanwezigheid of afwezigheid van bepaalde genen over een aantal soorten weergeven. Ze kunnen
bijvoorbeeld worden gebruikt om genen te clusteren die in dezelfde soorten of taxa voorkomen. Deze genen
hebben waarschijnlijk een similaire functie of zijn betrokken bij hetzelfde biologische proces. Ze kunnen ook
worden gebruikt om genfamilies en hun expansies of deleties te bestuderen. Een andere toepassing ligt in de
studie van anti-correlerende patronen: genen die exact omgekeerde patronen hebben. Deze genen kunnen een
compleet verschillende functie hebben, maar ze kunnen ook analoog zijn, oftewel ze kunnen dezelfde functie
vervullen in verschillende soorten of taxa, zonder dat ze een gemeenschappelijk voorouder-gen hebben. De
PhyloPat applicatie is niet alleen bruikbaar voor het zoeken met behulp van phylogenetische patronen; het heeft

functionaliteit voor allerlei soorten evolutionaire studies, en kan worden gebruikt voor de annotatie van eiwitten
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met onbekende functies. Deze functionele annotatie is één van de meest belangrijke directe toepassingen van
functional genomics.

De hoofdtoepassing van orthologie in drug discovery ligt in de veronderstelling dat verschillen in drug respons
tussen mens en model-organismen verklaard kunnen worden door te kijken naar de orthologe eiwitten tussen
deze soorten. In dit proefschrift hebben we geprobeerd aan te tonen dat eiwitten, en zelfs eiwit-families of
complete eiwit-pathways, cross-species gelinkt kunnen worden door orthologe relaties te identificeren. De
studie van de evolutie van het immuunsysteem van model-organismen (kip, rat, muis, etc.) naar mens,
beschreven in hoofdstuk 5, is een goed voorbeeld hiervan. Voor drug discovery is de interspeciéle mapping van
eiwit-pathways van specifiek belang. Een verschillende respons op een bepaalde drug in mens en in een model-
organisme kan worden verduidelijkt door de pathways van beide organismen over elkaar te leggen. Dit zou de
voorspellende waarde van studies in diermodellen drastisch kunnen verhogen. Echter, studies als deze hebben
zeer nauwkeurige en betrouwbare orthologie informatie nodig. Bovendien zouden andere factoren zoals
alternatieve transcripten, expressie-niveaus en driedimensionale structuur een deel van de oplossing kunnen
vormen. Alles bij elkaar, om een oplossing te vinden voor pharmacogenomics kwesties is mogelijk een hele
verzameling genomics data nodig, in plaats van alleen orthologie data.

Het concept van orthologie heeft vele toepassingen, en niet alleen in drug discovery. In hoofdstuk 6 hebben we
laten zien dat het gebruikt kan worden voor evolutionaire studies, in dit geval de evolutie van bidirectionele
genparen. Met behulp van Ensembl orthologi€éen waren we in staat om bidirectionele (head-to-head) genparen
uit soort A op genparen uit species B te mappen. Op deze manier verbonden we genparen uit elf vertebrate
soorten met elkaar. We vonden een verrijking van head-to-head genparen met een afstand van minder dan 600
bp in het mensen-, chimpanse€en, muizen-, ratten- en kippen-genoom, en een verrijking van head-to-tail
genparen in de vis en Ciona. We concluderen dat dat duidt op een overgang van head-to-tail gen-orientatie in
lagere vertebraten naar een head-to-head gen-orientatie in hogere vertebraten. Een studie als deze zou niet
mogelijk zijn geweest zonder complete en nauwkeurige orthologie informatie.

Nog een toepassing van orthologie is te zien in hoofdstuk 7. Hier behandelden we de constructie van
‘transcriptional units’ (TU), oftewel groepen van EST en mRNA sequenties die feitelijk behoren tot één enkel
gen, voor elk organisme in de UCSC genoom database. De TU sets uit mens en muis werden over elkaar gelegd
met behulp van ortholoog identificatie methodes, wat ons in staat stelde data uit verschillende soorten te
vergelijken. In de toeckomst zal deze methodologie gebruikt worden om TU sets uit meerdere soorten over elkaar
te leggen. De kwaliteit van deze mapping, en de conclusies die eruit worden getrokken, zijn grotendeels
athankelijk van de nauwkeurigheid van de orthologie-voorspelling.

Hoofdstuk 8 besluit dit proefschrift met de bewering dat het toepassen van orthologie alleen waarschijnlijk
weinig onderzoeksvragen zal beantwoorden: een grote verscheidenheid aan functional genomics data moet
worden verzameld om duidelijkheid te verschaffen over complexe systemen als pathways in het veld van de
drug discovery. Echter, de volledigheid en grotere betrouwbaarheid van toekomstige genomics gegevens zal
onderzoekers in staat stellen om studies zoals beschreven in dit proefschrift met meer detail en meer
nauwkeurigheid uit te voeren. Dit proefschrift biedt een goede basis voor dit toekomstig

pharmacophylogenomics onderzoek.
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En dan nu ... het meest gelezen onderdeel van het proefschrift: het dankwoord.

In de herfst van 2000 begon ik mijn stage bij het CMBI. In die tijd was deze afdeling een stuk kleiner dan nu.
Gert, bedankt dat je David en mij wegwijs maakte in de GPCRs. David, het was altijd erg gezellig, bedankt
daarvoor. We zijn nog steeds goede vrienden. Heel erg bedankt dat je mijn paranimf wil zijn. Ook mijn andere
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Na mijn stage werkte ik ruim een jaar op uitzendbasis voor Organon. Uit die tijd wil ik ook een paar mensen
met name bedanken. Jeroen, bedankt voor de eerste opzet van Protein World en succes met je eigen promotie.
Blaise, ik hoop dat je wat aan mijn Python adviezen hebt gehad. Ik wil je vooral bedanken voor de prachtige
vakantie in Kameroen, met name mogelijk gemaakt door je vrouw Liliane en de rest van de familie en

vriendenkring. En succes met je eigen promotie, het zal niet lang meer duren.

Uit het eerste jaar promotie-onderzoek: Martijn, ondanks dat de samenwerking niet altijd even vlotjes verliep,
toch bedankt voor de allereerste kennismaking met de wereld van comparative genomics, en je hulp bij mijn
eerste artikel (hoofdstuk 2). Berend, bedankt voor je wetenschappelijke adviezen. Bas, bedankt voor de rood-

groen-zwarte poef.

Twee personen uit de ‘Comics’ groep verdienen absoluut hun eigen alinea.

Guenola, omdat we ongeveer tegelijkertijd zijn begonnen, en met vergelijkbare problemen kampten, hebben we
veel steun bij elkaar kunnen vinden. Bovendien was je net zo e-mail verslaafd als ik. Merci beaucoup et bonne
chance, wat je ook gaat doen in de toekomst (wetenschap of schilderen).

Toni, ik herinner me vooral nog lange nachten in het uitgaanscentrum van Glasgow en Madrid, maar natuurlijk
ook gewoon in Nijmegen. Het ga je goed amigo, maar dat zal wel lukken nu je, terug in hometown Valencia,

vanaf je werkplek uitzicht hebt op de dolfijnenshow.

Ook buiten de Comics groep waren er een aantal mensen met wie ik veel contact had. Richard, leuk al die
gesprekken over orthologie, voetbal en reizen (in willekeurige volgorde). Marc, bedankt voor je adviezen, zowel
wetenschappelijk als anderszins. Er was altijd wat te zien in restaurant De Refter, of het nou op drie, zes of

negen uur was.

Na ruim een jaar ging ik verder bij Organon. Uit deze tijd kwam het grootste gedeelte van het proefschrift voort.
Peter, bedankt voor je begeleiding. Van alle personen die ik hier bedank is jouw bijdrage aan het proefschrift
natuurlijk het grootst geweest. Jacob, uitstekend dat je in je drukke schema nog tijd hebt kunnen vinden om mijn
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romotor te kunnen zijn. René, ‘grote kleine baas’, dankjewel voor je carriére adviezen
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Wilco ‘Hookipa’, je was gedurende een erg lange tijd mijn kamergenoot, en mijn vaste ‘Protein World’ maatje.
Bedankt voor je technische ondersteuning, bij met name het kippen-project (hoofdstuk 5). Heel fijn dat je zoveel
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de allereerste fase van mijn promotie-onderzoek. Fijn dat jullie mijn PromScan tool hebben kunnen gebruiken
voor jullie ChIP-on-chip studie. Sergei, veel succes met je promotie. Hinri, Martien, ik hoop dat er alsnog wat
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bestuursvergaderingen, de ALV’s, en alle georganiseerde activiteiten: het heeft me allemaal erg veel plezier
opgeleverd. Tk wil dan ook alle mensen met wie ik in het bestuur heb gezeten bedanken voor de fijne periode:
David, Terry, Simon, Mirre, Ilona, Roos, Wilbert, Fina, Christine, Maurice: het ga jullie goed. Ook de
Internet/PR commissie wil ik hier noemen: Bernd, Rob, Martijn, Cordny, Hosea: bedankt voor de prettige
samenwerking, ook al was deze vooral per e-mail (zoals het een commissie Internet/PR betaamt natuurlijk).
Terry, de autorit naar Lyon, en het verblijf daar, was zeer geslaagd. Dat werd mede mogelijk gemaakt door je

goede Frans, ook al was het met een Parijs’ accent.

Een andere nevenactiviteit werd verricht in de NCMLS PhD committee. Hierin heb ik vooral veel geleerd van
het organiseren van de jaarlijkse retraite, het eerste jaar met Els en het tweede jaar met Kirsten. Allebei bedankt

voor de prettige samenwerking, evenals natuurlijk de andere leden van de commissie.
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