Outline

• Introduction: Safeguarding the digital world
• Privacy protection
• Cybersecurity
• Privacy and security by design methodologies
• Focus of the research chair
• Reflection: Takeaways
SAFEGUARDING THE DIGITAL WORLD
The digital world

• Importance
 – Serving many purposes (healthcare, transportation, finance, e-government, ...)
 – Providing many (new) business opportunities (Google, WhatsApp, Instagram, Amazon, bol.com and Spotify)

• Our dependence on its well-functioning

• The well-functioning: A challenge
 – Its complexity
 – Its potential for misuse (intentionally or unintentionally)
Information Systems

• Definition
 – Software, hardware, data, people, procedures & networks
 – Enabling the use of information resources in a setting (e.g., organization)

• Examples
 – An Internet of Thing (IoT) system
 – Sharing data based on some measures
 • Procedural measures: Request, decide
 • Technological measures: Data transformation, data delivery via email

• Being socio-technological
 – Multi-disciplines involved
 – ICT, people, organizations, society
Our focus

• Privacy risks
 – Due to proliferation of personal data via information systems
 – Attacks: Personal data disclosure attacks

• Cybersecurity risks
 – Due to vulnerability of information systems
 – Attacks: Hacking and denial of service attacks
Market share (cybersecurity & privacy)

• Compound Annual Growth Rate (CAGR)

• About 10.2 – 12 %
 – From 2018 till 2023 / 2024 / 2025
 – Expanding to about 250 – 300 billion (USD)

• Actual spending may be far more
 – As companies may understate their cybersecurity budgets to protect their reputations
Dutch market share

• A study commissioned by Dutch Ministry of Economic Affairs

• Size of the Dutch cybersecurity sector
 – About 10% of the whole ICT turnover in 2014
 – The sector’s added value of 3.8 to 4.1 billion euros
 – About 0.6% of the Dutch GDP in 2014

• Growth of cybersecurity sector
 – About 14.5% faster than the ICT sector itself
Job market (cybersecurity & privacy)

• At the start of 2018
 – About half million job vacancies in the US
 – Bureau of Labor Statistics of the US department of Labor

• Job growth rate
 – 28% projected in 2016–2026
 – Much faster than the average for all other occupations

• Not just a job, but a job sector of the future
 – Many jobs, like: Data scientists, data security analysts, secure software developers, forensic analysts, penetration testers and chief security officers

• Like healthcare sector
Driving forces

• Emergence of disruptive ICT
 – Internet of Things (IoT)
 – Bring Your Own Device (BYOD)
• Rising needs for specific solutions
 – For cloud computing
• Strategic plans of businesses
 – Not to become a victim of these risks
 – To gain a cutting-edge business value out of being trustworthy
• Others
 – Increase in the frequency and sophistication of cyber threats (malware, ransomware and phishing messages)
 – Rising threat of global cyberterrorism
 – New regulations and laws coming into effect (like GDPR)
Approaching the field of privacy-protection & cybersecurity

• Remember being a job sector: Having a wide scope

• Individual (scientific) disciplines
 – Cryptography (e.g., to protect data integrity)
 – Criminology (e.g., to study motives of cybercriminals)

• System operation lifecycle/process
 – Risk management for an information system
 – Business continuity

• System development lifecycle/process
 – How to design and realize an information system
Our scope:

System development process

- How to design/realize privacy-protecting and secure information systems in practice?
 - A need for, among others, design methodologies

- Challenging: Requiring making trade-offs on many fronts
 - Data utility versus data privacy
 - Data subjects being in control versus ease-of-use

- Real innovation: To find balance among contending values

- Note: The other aspects also important, not our main focus
Scope of the talk

• Discuss a few existing challenges
 – Gaps between the current and desired situations
 – Gaps between relevant, but rather isolated, areas

• Bridging the gaps through
 – Practice-oriented and/or applied-research
 – Embodiment of the research results in education

• This talk: Portraying the research chair’s scope and activities
PRIVACY PROTECTION
Privacy

• A normative concept

• Deeply rooted in various disciplines
 – Philosophy
 – Law
 – Ethics
 – Politics
 – Sociology

• Aristotle
 – An early principled discussion of privacy
 – A distinction between public and private spheres of life
Definitions of privacy

1. The right to be let alone
2. Limited access to the self
3. Secrecy (of concealed information)
4. Control over personal information
5. Protection of personhood (personality integrity)
6. Intimacy (control over developing personal relationships like love, caring, loving, ...)

Def. 3: Secrecy

- Privacy is violated by the public disclosure of previously concealed information
 - No privacy issue, if a fact is previously known

- Too narrow
 - Failing to recognize group-privacy/selective-disclosure
 - Keeping things private from some people
 - Secret info is not always private (e.g., military plans)
 - Private info is not always secret (e.g., one’s debts)
 - One expects privacy in public (e.g., the books we read)
Issues of privacy definitions

• Definitions
 – The right to be let alone
 – Limited access to the self
 – Secrecy
 – Control over personal information
 – Protection of personhood
 – Intimacy

• Issues
 – Solove: Being too narrow (over restrictive) or too broad (over inclusive)
 – Changing with (technological) developments
Evolution of privacy definition

• Aristotle (384-322 BC)
 – Making distinction between public and private spheres of life
Evolution of privacy definition

• Warren and Brandeis (1890)
 – The right to be let alone: To live one’s life as one chooses, free from assault intrusion or invasion
 – Instantaneous photography via Kodak’s new snap cameras (George Eastman, 1881-1889)
 – The widespread circulation of newspapers
Evolution of privacy definition

• Westin’s definition (1968)
 – Control over personal information
 – Privacy is the **claim of individuals**, groups, or institutions to determine for themselves **when, how, and to what extent** information about them is communicated to others
Evolution of privacy definition

• From normative definition to formal definition

• Normative notion of privacy
 – Underlying many privacy regulations (e.g., GDPR)

• Example
 – Our dataset contains personal data if it can reveal personal information when it is combined with other datasets
Evolution of privacy definition

- From normative definition to formal definition
- Normative notion of privacy

Threshold of personal information disclosure

Our data set

Case I
An example for case I

• Our data set: An unprotected patient table

<table>
<thead>
<tr>
<th>name</th>
<th>job</th>
<th>sex</th>
<th>age</th>
<th>disease</th>
<th>height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>engineer</td>
<td>male</td>
<td>35</td>
<td>hepatitis</td>
<td>184</td>
</tr>
<tr>
<td>Fred</td>
<td>engineer</td>
<td>male</td>
<td>38</td>
<td>HIV</td>
<td>180</td>
</tr>
<tr>
<td>Doug</td>
<td>lawyer</td>
<td>male</td>
<td>38</td>
<td>Flu</td>
<td>210</td>
</tr>
<tr>
<td>Alice</td>
<td>writer</td>
<td>female</td>
<td>30</td>
<td>Flu</td>
<td>172</td>
</tr>
<tr>
<td>Cathy</td>
<td>writer</td>
<td>female</td>
<td>33</td>
<td>HIV</td>
<td>170</td>
</tr>
<tr>
<td>Emily</td>
<td>dancer</td>
<td>female</td>
<td>31</td>
<td>HIV</td>
<td>169</td>
</tr>
<tr>
<td>Gladys</td>
<td>dancer</td>
<td>female</td>
<td>31</td>
<td>HIV</td>
<td>171</td>
</tr>
</tbody>
</table>
Evolution of privacy definition

• From normative definition to formal definition
• Normative notion of privacy

Threshold of personal information disclosure

Case I Case II

Background information

Our data set
An example for case II

- A protected patient Table

<table>
<thead>
<tr>
<th>name</th>
<th>job</th>
<th>sex</th>
<th>age</th>
<th>disease</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>engineer</td>
<td>male</td>
<td>35</td>
<td>hepatitis</td>
<td>184</td>
</tr>
<tr>
<td>Fred</td>
<td>engineer</td>
<td>male</td>
<td>38</td>
<td>HIV</td>
<td>180</td>
</tr>
<tr>
<td>Doug</td>
<td>lawyer</td>
<td>male</td>
<td>38</td>
<td>Flu</td>
<td>210</td>
</tr>
<tr>
<td>Alice</td>
<td>writer</td>
<td>female</td>
<td>30</td>
<td>Flu</td>
<td>172</td>
</tr>
<tr>
<td>Cathy</td>
<td>writer</td>
<td>female</td>
<td>33</td>
<td>HIV</td>
<td>170</td>
</tr>
<tr>
<td>Emily</td>
<td>dancer</td>
<td>female</td>
<td>31</td>
<td>HIV</td>
<td>169</td>
</tr>
<tr>
<td>Gladys</td>
<td>dancer</td>
<td>female</td>
<td>31</td>
<td>HIV</td>
<td>171</td>
</tr>
</tbody>
</table>
An example for case II

- A protected patient Table

<table>
<thead>
<tr>
<th>name</th>
<th>job</th>
<th>sex</th>
<th>age</th>
<th>disease</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engineer</td>
<td>male</td>
<td>35</td>
<td>hepatitis</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>engineer</td>
<td>male</td>
<td>38</td>
<td>HIV</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>lawyer</td>
<td>male</td>
<td>38</td>
<td>Flu</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>writer</td>
<td>female</td>
<td>30</td>
<td>Flu</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>writer</td>
<td>female</td>
<td>33</td>
<td>HIV</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>dancer</td>
<td>female</td>
<td>31</td>
<td>HIV</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>dancer</td>
<td>female</td>
<td>31</td>
<td>HIV</td>
<td>171</td>
<td></td>
</tr>
</tbody>
</table>
An example for case II

- A protected patient Table

<table>
<thead>
<tr>
<th>name</th>
<th>job</th>
<th>sex</th>
<th>age</th>
<th>disease</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>profess.</td>
<td>male</td>
<td>35-39</td>
<td>hepatitis</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>profess.</td>
<td>male</td>
<td>35-39</td>
<td>HIV</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>profess.</td>
<td>male</td>
<td>35-39</td>
<td>Flu</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>writer</td>
<td>female</td>
<td>30</td>
<td>Flu</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>writer</td>
<td>female</td>
<td>33</td>
<td>HIV</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>dancer</td>
<td>female</td>
<td>31</td>
<td>HIV</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>dancer</td>
<td>female</td>
<td>31</td>
<td>HIV</td>
<td>171</td>
<td></td>
</tr>
</tbody>
</table>
An example for case II

• A protected patient Table

<table>
<thead>
<tr>
<th>name</th>
<th>job</th>
<th>sex</th>
<th>age</th>
<th>disease</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>profess.</td>
<td>male</td>
<td>35-39</td>
<td>hepatitis</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>profess.</td>
<td>male</td>
<td>35-39</td>
<td>HIV</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>profess.</td>
<td>male</td>
<td>35-39</td>
<td>Flu</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>artist</td>
<td>female</td>
<td>30-34</td>
<td>Flu</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>artist</td>
<td>female</td>
<td>30-34</td>
<td>HIV</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>artist</td>
<td>female</td>
<td>30-34</td>
<td>HIV</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>artist</td>
<td>female</td>
<td>30-34</td>
<td>HIV</td>
<td>171</td>
<td></td>
</tr>
</tbody>
</table>

Background information = This table belongs to people in this room
Evolution of privacy definition

- From normative definition to formal definition
- Normative notion of privacy

Threshold of personal information disclosure

Case I

Case II

Case III

Our data set

Background information
An example for case III

• **Sensitive personal information**: The age of an individual

• **Background knowledge**: Alice is 5 years younger than average American women

• **Our data set**: The ages of all American women (anonymous)

• **Question**: Is Alice’s privacy compromised by sharing our data set?

• What if Alice is not American (i.e., Alice isn’t in the data set)
Evolution of privacy definition

• From **normative** definition to formal definition
• Normative notion of privacy
Evolution of privacy definition

• From normative definition to formal definition

• Formal notion of privacy:
 – Dwork et al. (2006) differential privacy
 • The presence or absence of the data of an individual in a dataset must not have an observable impact on the output of a computation over the data set
 – Already in use by Google, Apple, Uber, and the U.S. Census Bureau

Nessim et al. (2018, 2019)
Evolution of privacy definition

- From **normative** definition to **formal** definition
- Normative notion of privacy

![Diagram showing the evolution of privacy definition with Case I, Case II, and Case III, indicating changes in the threshold of personal information disclosure.]
Issues of privacy definitions

• Definitions
 – The right to be let alone
 – Limited access to the self
 – Secrecy
 – Control over personal information
 – Protection of personhood
 – Intimacy

• Issues
 – Solove: Being too narrow (over restrictive) or too broad (over inclusive)
 – Changing with (technological) developments
Solove’s conclusions

• Privacy cannot be conceptualized in a definition
 – Focusing on necessary and sufficient conditions
 (inclusion and exclusion game)
Solove’s model

• A bottom up approach
• Focusing on
 – Harmful activities for privacy (privacy problems)
 – Rather than on what privacy is

• Our opinion
 – It can be relevant for realizing privacy by design
Solove’s model (slightly modified)

Data subject

Data holders (Data processor/controllers)

Data consumers
Solove’s model (slightly modified)

Data subject

Data holders (Data processor/controllers)

Data consumers

Info collection

Info processing

Info dissemination

Invasions
Solove’s model for privacy risks

Surveillance
Interrogation

Info collection

Aggregation
Identification
Insecurity
Secondary use
Exclusion

Info processing

Intrusion
Decisional interference

Invasions

Info dissemination

Breach of confidentiality
Disclosure
Exposure
Increase accessibility
Blackmail
Appropriation
Distortion

Data subject

Data holders

Data consumers

Impacting people’s liberty, economical, psychological status (Crawford, 2014)
Eliciting privacy requirements

• Risk oriented
 – Identify the assets, the threats, & risks (e.g., probability × impact)

• Goal oriented
 – Privacy principles as goals that the system must fulfill
 – Example: Ensure accountability
 • Demonstrating compliance with data protection principles
 – Each high-level goal → guidelines → a set of operational requirements
Technological strategies
(privacy enhancing technologies)

Solution space

Non technological strategies
(procedural, contractual, educational solutions)

Problem space

High level requirements
(ethics & privacy laws regulations, guidelines)
CYBERSECURITY
Cybersecurity

• “Protection of information and its critical elements, including the ICT systems (software and hardware) that use, store, and transmit that information”

 US Committee on National Security Systems (CNSS)

• Aiming at protecting a number of the, so-called, critical characteristics of information assets, whether in storage, processing, or transmission
Critical characteristics of info assets

• Confidentiality
 – To protect information from disclosure or exposure to unauthorized individuals or systems
 – For example, passwords are confidential information

• Integrity
 – To protect information so that it is complete and uncorrupted
 – For example, bank account information should not be modified

• Availability
 – To enable authorized entities to access to information without interference or obstruction, and with the required data quality
 – For example: Denial of Service (DoS) attacks prevent people accessing their bank accounts

CIA triangular
Interplay between privacy protection and cybersecurity

• Dependency of privacy protection on cybersecurity
 – Two pivotal privacy principles in legal domain: data integrity and confidentiality principles (CIA)

• Dependency of cybersecurity on privacy
 – Less known
 – Relevant
 • For distributed defense against cyber attacks
 • For distributed systems (like IoT)
Information sharing

• A pillar of collaborative cybersecurity

• Especially in distributed settings
 – The Internet itself
 – The Internet of Things (IoT) systems
 – Distributed intrusion detection systems
 – Identity management systems
 – Etc.
Centralized information sharing

• Data processing (e.g., privacy protection):
 – How much local and how much centralized?

• Privacy issues
• Of victims being under attack (from local organizations)
• Of suspects being seen as the attacker
 – Like the IP-addresses of potential attackers
 – If done inappropriately, may lead to imposing sanctions against alleged, but not proven, cyber attackers
That is why this research chair considers privacy protection and cybersecurity together.
TOWARDS A PRIVACY AND SECURITY BY DESIGN METHODOLOGY
Bridging the gap

• Our goal
 – Privacy-protecting and secure info system design

• Privacy & security by design

Solution space

Problem space

Privacy & security by design methodology

Non technological strategies (procedural, contractual, educational solutions)

Technological strategies (privacy enhancing technologies)

High level requirements (ethics & privacy laws regulations, guidelines)
Security & privacy by design

• Future research

• Vision on possible approaches
 – Engineering
 – Design thinking
 – Mix of engineering & design thinking
Engineering privacy

- Information systems’ tasks
 - Data transfer
 - Data storage
 - Data processing
- How they are performed
- What type of data is involved
- Who uses the data

Spiekermann et al. 2009
Engineering privacy

• Information systems’ tasks
 – Data transfer
 – Data storage
 – Data processing
• How they are performed
• What type of data is involved
• Who uses the data
• In which sphere
 – User sphere (under control of the data subject)
 – Joint sphere (under the joint control of the data subject and service providers)
 – Recipient sphere (not under control of the data subject)
What to do do next?
Eliciting privacy requirements

• Risk oriented
 – Identify the assets, the threats, & risks (e.g., probability × impact)

• Goal oriented
 – Like accountability
 – High-level goal → guidelines → requirements
Design thinking approach

• Initially used for product and service design
• Also applied to other areas with interacting
 – People
 – Organizations
 – Technologies
• Shown useful where user needs and concerns are insufficiently communicated and formulated (being hidden in tacit knowledge)
Process of design thinking

- Empathize: Discover and **understand** the real concerns, problems, and experiences of stakeholders
- Define: Find out the deeper roots of the needs of stakeholders (esp. those of directly involved end-users)
- Ideate: Explore and **generate solutions** for the identified needs
- Prototype: Make **prototypes** tangible for (a subset of) the ideated viable solutions
- Test: Experiment and evaluate the prototypes with the end-users and learn from them
Characteristics of design thinking

• Design process is highly collaborative and multidisciplinary

• Involving end-users to prevent disappointments
 – That the artifacts do not cater the real needs of users

• Fail fast approach to push the design process towards producing viable products

• Creating human-centric solutions
 – Being innovative
 – Based on real end-user needs
 – Being holistic in considering the contextual circumstances
 – Capable of having social impacts and changing mindsets
Design thinking in development of information systems

• Proposed for
 – Creating innovative mobile apps
 – Designing complex embedded/IoT systems
 – Devising social information systems to have positive social changes

• Proposed for improving privacy protection & security
 – Putting risk awareness into practical and collaborative action within organizations
 – Delivering more user-focused security
(a) Making multi-dimensional design trade-offs

P: Data privacy

U: Data utility

Ideal point

S1, S2, S3, S4, S5, S6
Making trade-offs among actionable decisions

- Those data protection measures that are going to be operationalized in a complex and possibly unpredictable social context

- Example: Open data scenarios
 - Transparency versus privacy
 - Small steps in right direction
Starting point

change in practice (solution space)

change in understanding (problem space)

target Situation(s)

situ1 → situ2 → situ3
RESEARCH FOCUS
Relation to education

- Our approach: Design and development of privacy-protecting and secure information systems
 - Characteristics: Socio-technological systems

- School of Communication, Multimedia and Information-technology (CMI)

- Relation to CMI disciplines
 - Technical Informatica
 - Informatica
 - Creative Media and Game Technology
 - Communication and Multimedia Design
 - Communication
Relation to education

- Our approach: Design and development of privacy-protecting and secure information systems
 - Characteristics: Socio-technological systems

- School of Communication, Multimedia and Information-technology (CMI)

- Relation to CMI disciplines
 - Technical Informatica (hardware-software)
 - Informatica (software)
 - Creative Media and Game Technology (human & comp. interaction)
 - Communication and Multimedia Design (human & comp. interaction)
 - Communication (impact of data/information on humans)
Research at Rotterdam Uni of AS

• Practice-oriented research
 – Applied-research is also relevant

• Key role of researcher-lecturers
 – To embed the research results in education

• Research projects
More towards practice-oriented & applied research

More towards practice-oriented research
Research at Rotterdam Uni of AS

• Practice-oriented research
 – Applied-research is also relevant

• Key role of researcher-lecturers
 – To embed the research results in education

• Research projects
Research plans

- Tools for automating parts of privacy-protection and security
 - For supporting users
 - As complimentary to non-technological measures
 - E.g., to protect privacy while preserving data utility

- Design methodologies
 - Engineering methods and design thinking
 - Enabling privacy & security by design

- Artificial intelligence based information systems
 - Data collection
 - Algorithms (data modeling)
 - Information dissemination (model interpretation)
REFLECTION
Takeaways

• Privacy protection and cybersecurity field
 – Covering a wide spectrum of expertise areas
 – Facing a large shortage of human capital, while its market share growing

• Privacy cannot be conceptualized in a definition
 – Should aim at identifying privacy risks

• Interplay between privacy and cybersecurity
 – Two intertwined concepts nowadays
Takeaways

• Realizing privacy/security by design principles
 – Linking the solution space and problem space
 – Solution space
 • Technological measures
 • Non-technological measures (e.g., procedural, educational and contractual)

• A need for a systematic design methodology
 – Design-thinking
 – Conventional engineering

• Researcher-lecturers play a key role
 – To embed the research results in education